Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical kinetics elementary reaction

Both unimolecular and bimolecular reactions are common throughout chemistry and biochemistry. Binding of a hormone to a reactor is a bimolecular process as is a substrate binding to an enzyme. Radioactive decay is often used as an example of a unimolecular reaction. However, this is a nuclear reaction rather than a chemical reaction. Examples of chemical unimolecular reactions would include isomerizations, decompositions, and dis-associations. See also Chemical Kinetics Elementary Reaction Unimolecular Bimolecular Transition-State Theory Elementary Reaction... [Pg.484]

We deal with many reactions that are not elementary. Most industrially important reactions go through a complex kinetic mechanism before the final products are reached. The mechanism may give a rate expression far different than Equation (1.14), even though it involves only short-lived intermediates that never appear in conventional chemical analyses. Elementary reactions are generally limited to the following types. [Pg.6]

Bimolecular processes are very common in biological systems. The binding of a hormone to a receptor is a bimolecular reaction, as is substrate and inhibitor binding to an enzyme. The term bimolecular mechanism applies to those reactions having a rate-limiting step that is bimolecular. See Chemical Kinetics Molecularity Reaction Order Elementary Reaction Transition-State Theory... [Pg.81]

CHEMICAL KINETICS MOLECULARITY REACTION ORDER ELEMENTARY REACTION... [Pg.726]

It was already mentioned above that the condition of monodispersity of micelles means that only one kind of aggregates with a fixed aggregation number nj is formed. From the point of view of chemical kinetics the reaction (5.39) is a reaction of ni order. Because typical micelles consist of some tens or hundreds molecules the probability of this elementary step is zero. Therefore, Eq. (5.39) presents only the final result of nj-l stepwise reactions of first order. The corresponding equilibrium constant is then a product of n -l constants for each step of the micellisation process. In our simplest case we can consider that all these constants are the same and we get [ 12]... [Pg.411]

As we have emphasized above, in classical chemical kinetics the reaction rate is determined as the number of instantaneous elementary acts performed in a unit of time. However, if the conformational relaxation of a protein is included in the elementary chemical act, the latter cannot be considered as instantaneous. Therefore, we cannot exclude the possibility of those cases... [Pg.19]

In chemical kinetics a reaction rate constant k (also called rate coefficient) quantifies the speed of a chemical reaction. The value of this coefficient k depends on conditions such as temperature, ionic strength, surface area of the adsorbent or light irradiation. For elementary reactions, the rate equation can be derived from first principles, using for example collision theory. The rate equation of a reaction with a multi-step mechanism cannot, in general, be deduced from the stoichiometric coefficients of the overall reaction it must be determined experimentally. The equation may involve fractional exponential coefficients, or may depend on the concentration of an intermediate species. [Pg.30]

The foundations of the modem tireory of elementary gas-phase reactions lie in the time-dependent molecular quantum dynamics and molecular scattering theory, which provides the link between time-dependent quantum dynamics and chemical kinetics (see also chapter A3.11). A brief outline of the steps hr the development is as follows [27],... [Pg.772]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

Complex chemical mechanisms are written as sequences of elementary steps satisfying detailed balance where tire forward and reverse reaction rates are equal at equilibrium. The laws of mass action kinetics are applied to each reaction step to write tire overall rate law for tire reaction. The fonn of chemical kinetic rate laws constmcted in tliis manner ensures tliat tire system will relax to a unique equilibrium state which can be characterized using tire laws of tliennodynamics. [Pg.3054]

A postulated reaction mechanism is a description of all contributing elementary reactions (we will call this the kinetic scheme), as well as a description of structures (electronic and chemical) and stereochemistry of the transition state for each elementary reaction. (Note that it is common to mean by the term transition state both the region at the maximum in the energy path and the actual chemical species that exists at this point in the reaction.)... [Pg.4]

The overall reaction stoichiometry having been established by conventional methods, the first task of chemical kinetics is essentially the qualitative one of establishing the kinetic scheme in other words, the overall reaction is to be decomposed into its elementary reactions. This is not a trivial problem, nor is there a general solution to it. Much of Chapter 3 deals with this issue. At this point it is sufficient to note that evidence of the presence of an intermediate is often critical to an efficient solution. Modem analytical techniques have greatly assisted in the detection of reactive intermediates. A nice example is provided by a study of the pyridine-catalyzed hydrolysis of acetic anhydride. Other kinetic evidence supported the existence of an intermediate, presumably the acetylpyridinium ion, in this reaction, but it had not been detected directly. Fersht and Jencks observed (on a time scale of tenths of a second) the rise and then fall in absorbance of a solution of acetic anhydride upon treatment with pyridine. This requires that the overall reaction be composed of at least two steps, and the accepted kinetic scheme is as follows. [Pg.7]

The questions one could ask about a reaction need not be elaborated further at this point, as they are familiar to persons with training in elementary chemistry. Chemical kinetics and its subsidiary tools provide the means by which answers of varying degrees of certainty can be formulated. [Pg.2]

According to the definition given, this is a second-order reaction. Clearly, however, it is not bimolecular, illustrating that there is distinction between the order of a reaction and its molecularity. The former refers to exponents in the rate equation the latter, to the number of solute species in an elementary reaction. The order of a reaction is determined by kinetic experiments, which will be detailed in the chapters that follow. The term molecularity refers to a chemical reaction step, and it does not follow simply and unambiguously from the reaction order. In fact, the methods by which the mechanism (one feature of which is the molecularity of the participating reaction steps) is determined will be presented in Chapter 6 these steps are not always either simple or unambiguous. It is not very useful to try to define a molecularity for reaction (1-13), although the molecularity of the several individual steps of which it is comprised can be defined. [Pg.6]

Each of these variables will be considered in this book. We start with concentrations, because they determine the form of the rate law when other variables are held constant. The concentration dependences reveal possibilities for the reaction scheme the sequence of elementary reactions showing the progression of steps and intermediates. Some authors, particularly biochemists, term this a kinetic mechanism, as distinct from the chemical mechanism. The latter describes the stereochemistry, electron flow (commonly represented by curved arrows on the Lewis structure), etc. [Pg.9]

Chemical vapor deposition (CVD) of carbon from propane is the main reaction in the fabrication of the C/C composites [1,2] and the C-SiC functionally graded material [3,4,5]. The carbon deposition rate from propane is high compared with those from other aliphatic hydrocarbons [4]. Propane is rapidly decomposed in the gas phase and various hydrocarbons are formed independently of the film growth in the CVD reactor. The propane concentration distribution is determined by the gas-phase kinetics. The gas-phase reaction model, in addition to the film growth reaction model, is required for the numerical simulation of the CVD reactor for designing and controlling purposes. Therefore, a compact gas-phase reaction model is preferred. The authors proposed the procedure to reduce an elementary reaction model consisting of hundreds of reactions to a compact model objectively [6]. In this study, the procedure is applied to propane pyrolysis for carbon CVD and a compact gas-phase reaction model is built by the proposed procedure and the kinetic parameters are determined from the experimental results. [Pg.217]

The study of the rates of chemical reactions is called kinetics. Chemists study reaction rates for many reasons. To give just one example, Rowland and Molina used kinetic studies to show the destructive potential of CFCs. Kinetic studies are essential to the explorations of reaction mechanisms, because a mechanism can never be determined by calculations alone. Kinetic studies are important in many areas of science, including biochemistry, synthetic chemistry, biology, environmental science, engineering, and geology. The usefulness of chemical kinetics in elucidating mechanisms can be understood by examining the differences in rate behavior of unimolecular and bimolecular elementary reactions. [Pg.1054]

The Flory principle allows a simple relationship between the rate constants of macromolecular reactions (whose number is infinite) with the corresponding rate constants of elementary reactions. According to this principle all chemically identical reactive centers are kinetically indistinguishable, so that the rate constant of the reaction between any two molecules is proportional to that of the elementary reaction between their reactive centers and to the numbers of these centers in reacting molecules. Therefore, the material balance equations will comprise as kinetic parameters the rate constants of only elementary reactions whose number is normally rather small. [Pg.170]

In the framework of this ultimate model [33] there are m2 constants of the rate of the chain propagation kap describing the addition of monomer to the radical Ra whose reactivity is controlled solely by the type a of its terminal unit. Elementary reactions of chain termination due to chemical interaction of radicals Ra and R is characterized by m2 kinetic parameters k f . The stochastic process describing macromolecules, formed at any moment in time t, is a Markov chain with transition matrix whose elements are expressed through the concentrations Ra and Ma of radicals and monomers at this particular moment in the following way [1,34] ... [Pg.176]

This chapter treats the descriptions of the molecular events that lead to the kinetic phenomena that one observes in the laboratory. These events are referred to as the mechanism of the reaction. The chapter begins with definitions of the various terms that are basic to the concept of reaction mechanisms, indicates how elementary events may be combined to yield a description that is consistent with observed macroscopic phenomena, and discusses some of the techniques that may be used to elucidate the mechanism of a reaction. Finally, two basic molecular theories of chemical kinetics are discussed—the kinetic theory of gases and the transition state theory. The determination of a reaction mechanism is a much more complex problem than that of obtaining an accurate rate expression, and the well-educated chemical engineer should have a knowledge of and an appreciation for some of the techniques used in such studies. [Pg.76]

To the uninitiated student, the task of postulating a suitable mechanism for a complex chemical reaction often seems to be an exercise in extrasensory perception. Even students who have had some exposure to kinetics often cannot understand how the kineticist can write down a series of elementary reactions and avow that the mechanism is reasonable. Nonetheless, there is a set of guidelines within which the kineticist works in postulating a mechanism. Since these... [Pg.83]


See other pages where Chemical kinetics elementary reaction is mentioned: [Pg.562]    [Pg.562]    [Pg.189]    [Pg.12]    [Pg.831]    [Pg.764]    [Pg.2114]    [Pg.2145]    [Pg.2700]    [Pg.41]    [Pg.1]    [Pg.1]    [Pg.144]    [Pg.12]    [Pg.334]    [Pg.335]    [Pg.346]    [Pg.218]    [Pg.25]    [Pg.384]    [Pg.163]    [Pg.186]    [Pg.196]    [Pg.89]    [Pg.105]    [Pg.120]    [Pg.154]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Chemical kinetics

Chemical reaction kinetics

Chemical reaction kinetics reactions

Elementary Chemical Kinetics

Elementary chemical reaction

Elementary reaction

Kinetic Chemicals

Kinetics elementary

Kinetics elementary reactions

© 2024 chempedia.info