Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical equilibrium concentration data

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

Although Le Chatelier s principle does not tell us how much an equilibrium will be shifted, there is a way to determine the position of an equilibrium once data have been determined for the equilibrium experimentally. The ratio of concentrations of products to reactants, each raised to a suitable power, is constant for a given equilibrium reaction. The letters A, B, C, and D are used here to stand for general chemical species. Thus, for a chemical reaction in general,... [Pg.288]

Values of Kadd for the addition of water (hydration) of alkenes to give the corresponding alcohols. These equilibrium constants were obtained directly by determining the relative concentrations of the alcohol and alkene at chemical equilibrium. The acidity constants pATaik for deprotonation of the carbocations by solvent are not reported in Table 1. However, these may be calculated from data in Table 1 using the relationship pA ik = pATR + logA dd (Scheme 7). [Pg.84]

To make contact with atomic theories of the binding of interstitial hydrogen in silicon, and to extrapolate the solubility to lower temperatures, some thermodynamic analysis of these data is needed a convenient procedure is that of Johnson, etal. (1986). As we have seen in Section II. l,Eqs. (2) et seq., the equilibrium concentration of any interstitial species is determined by the concentration of possible sites for this species, the vibrational partition function for each occupied site, and the difference between the chemical potential p, of the hydrogen and the ground state energy E0 on this type of site. In equilibrium with external H2 gas, /x is accurately known from thermochemical tables for the latter. A convenient source is the... [Pg.292]

Because of the lack of high-pressure experimental reaction rate data for HMX and other explosives with which to compare, we produce in Figure 15 a comparison of dominant species formation for decomposing HMX that have been obtained from entirely different theoretical approaches. The concentration of species at chemical equilibrium can be estimated through thermodynamic calculations with the Cheetah thermochemical code.32,109... [Pg.182]

To test the validity of the extended Pitzer equation, correlations of vapor-liquid equilibrium data were carried out for three systems. Since the extended Pitzer equation reduces to the Pitzer equation for aqueous strong electrolyte systems, and is consistent with the Setschenow equation for molecular non-electrolytes in aqueous electrolyte systems, the main interest here is aqueous systems with weak electrolytes or partially dissociated electrolytes. The three systems considered are the hydrochloric acid aqueous solution at 298.15°K and concentrations up to 18 molal the NH3-CO2 aqueous solution at 293.15°K and the K2CO3-CO2 aqueous solution of the Hot Carbonate Process. In each case, the chemical equilibrium between all species has been taken into account directly as liquid phase constraints. Significant parameters in the model for each system were identified by a preliminary order of magnitude analysis and adjusted in the vapor-liquid equilibrium data correlation. Detailed discusions and values of physical constants, such as Henry s constants and chemical equilibrium constants, are given in Chen et al. (11). [Pg.66]

A sorption isotherm expresses the quantity of material adsorbed per unit mass of adsorbent as a function of the equilibrium concentration of the adsorbate. The necessary data is derived from experiments where a specified mass of adsorbent is equilibrated with a known volume at a specific concentration of a chemical and the resultant equilibrium concentration is measured in solution [33]. [Pg.172]

Round Lake in southwestern Minnesota is down wind from an oil paint factory that has air emissions of solvents. Two of the primary solvents emitted are 1,2-dichloroethylene and heptane, with mean air concentrations over the lake of 2 ppb(v) and 100 ppb(v), respectively. Given the chemical data below, estimate the eventual equilibrium concentration and the mass of these two compounds in the water, suspended particulate, sediments, and the fish of Round Lake. The... [Pg.236]

Medium-chain alcohols such as 2-butoxyethanol (BE) exist as microaggregates in water which in many respects resemble micellar systems. Mixed micelles can be formed between such alcohols and surfactants. The thermodynamics of the system BE-sodlum decanoate (Na-Dec)-water was studied through direct measurements of volumes (flow denslmetry), enthalpies and heat capacities (flow microcalorimetry). Data are reported as transfer functions. The observed trends are analyzed with a recently published chemical equilibrium model (J. Solution Chem. 13,1,1984). By adjusting the distribution constant and the thermodynamic property of the solute In the mixed micelle. It Is possible to fit nearly quantitatively the transfer of BE from water to aqueous NaDec. The model Is not as successful for the transfert of NaDec from water to aqueous BE at low BE concentrations Indicating self-association of NaDec Induced by BE. The model can be used to evaluate the thermodynamic properties of both components of the mixed micelle. [Pg.79]

The chemical equilibrium model of Roux et al (6) is a powerful tool for the study of the thermodynamics of mixed micellar solutions. It can estimate the distribution constant of the surfactant 3 between water and micelles of the surfactant 2 and the thermodynamic properties of the surfactant 3 in the mixed micelles. For this it is necessary to obtain reliable data over a large concentration range of solute 2. [Pg.88]

The effect ol change ol temperature nn a system in chemical equilibrium is thin the equilibrium point is shifted ll) toward the side itiii/v from that which evolves heat when the temperature is wised, and (2) toward the side which evolves heal when the temperature is lowered. It is tis if the amount of heal were a muterinl reactant and its concentration (temperature or intensity of heal) increased, in respect to the tUrttiitm of the sltilt of tile equilibrium point. The amount of die shill at constant pressure can he calculated in eases where one possesses the proper data. [Pg.354]

Usually, this method is applied to enzymatic reactions, and the equilibrium IEs are obtained along with kinetic IEs that are of greater interest. An example is the deuterium IE on the reaction of acetone-c/6 with NADH, to form 2-propanol-fi 6 + NAD+. A mixture of acetone-c/6 and 2-propanol is prepared along with coreactants NADH and NAD+ at concentrations such that the reaction is at chemical equilibrium. Isotopic equilibration is initiated by adding enzyme. In this case the spectral signature lies in the NADH, but the measured maximum or minimum of absorbance provides the right-hand side of Equation (25) or (26) and thus a for each mixture. An estimate of AThh is needed to solve for each R in Equation (23) in order to fit the data to Equation (27), but after successive iterations the values of R and XEIE converge. [Pg.133]

Mass Balance around the Absorption Column The mass balance around this unit was refined due to the availability of better chemical equilibrium data (Ref. Al, see Chapter 9). This data predicted that the dissolved gas concentration in the red product acid stream flowing from the column would in fact be of lower concentration than initially thought, and the dissolved gas component tended to be nitrogen monoxide and dioxide rather than nitrogen tetroxide. Therefore,... [Pg.160]

Experimentally, the investigation of adsorption from solution is much simpler than that of gas adsorption. A known mass of adsorbent solid is shaken with a known volume of solution at a given temperature until there is no further change in the concentration of the supernatant solution. This concentration can be determined by a variety of methods involving chemical or radiochemical analysis, colorimetry, refractive index, etc. The experimental data are usually expressed in terms of an apparent adsorption isotherm in which the amount of solute adsorbed at a given temperature per unit mass of adsorbent - as calculated from the decrease (or increase) of solution concentration - is plotted against the equilibrium concentration. [Pg.169]

Ikeda et al. (1984b) plotted Eq. (4.42) by determining the equilibrium concentrations from adsorption isotherms for S(H), S(NH4), and NH4, and using the pH value to determine [H+]. This plot shows good linearity (Fig. 4.11), which confirms that the mechanism hypothesized in Eq. (4.40) is operational. The kv and k- values for Eq. (4.42) can then be calculated from the slope and intercept of Fig. 4.11, and the kinetic Keq can be determined from the ratio kjk x (Table 4.2). It is important to notice that the values calculated kinetically and statically (equilibrium method) are similar, which indicates that the rate constants one calculates from p-jump experiments are chemical kinetics rate constants. These data also verify... [Pg.83]


See other pages where Chemical equilibrium concentration data is mentioned: [Pg.389]    [Pg.325]    [Pg.236]    [Pg.24]    [Pg.344]    [Pg.145]    [Pg.125]    [Pg.85]    [Pg.6]    [Pg.35]    [Pg.140]    [Pg.145]    [Pg.602]    [Pg.152]    [Pg.101]    [Pg.630]    [Pg.651]    [Pg.168]    [Pg.212]    [Pg.184]    [Pg.333]    [Pg.180]    [Pg.631]    [Pg.373]    [Pg.962]    [Pg.468]    [Pg.265]    [Pg.306]    [Pg.33]    [Pg.35]    [Pg.393]    [Pg.94]    [Pg.373]   
See also in sourсe #XX -- [ Pg.734 , Pg.735 , Pg.736 ]




SEARCH



Chemical concentration

Chemical data

Chemical equilibrium concentrations

Concentration data

Equilibria equilibrium concentrations

Equilibrium concentration

Equilibrium data

© 2024 chempedia.info