Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbital overlap chemical bonds

ABSTRACT. The concepts of a band Structure, Bloch functions, the wave vector, and densities of states are introduced, making as strong connections as possible to quantum chemical ideas. The number of orbitals in a unit ceH determines the number of bonds, orbital overlap is responsible for the dispersion of the bands and the topology of orbital interactions for the way the bands run. A measure of bond strength in the solid, the Crystal Orbital Overlap Population, is introduced. [Pg.97]

Let us now examine the Diels-Alder cycloaddition from a molecular orbital perspective Chemical experience such as the observation that the substituents that increase the reac tivity of a dienophile tend to be those that attract electrons suggests that electrons flow from the diene to the dienophile during the reaction Thus the orbitals to be considered are the HOMO of the diene and the LUMO of the dienophile As shown m Figure 10 11 for the case of ethylene and 1 3 butadiene the symmetry properties of the HOMO of the diene and the LUMO of the dienophile permit bond formation between the ends of the diene system and the two carbons of the dienophile double bond because the necessary orbitals overlap m phase with each other Cycloaddition of a diene and an alkene is said to be a symmetry allowed reaction... [Pg.414]

Valence bond theory (Section 2 3) Theory of chemical bond mg based on overlap of half filled atomic orbitals between two atoms Orbital hybridization is an important element of valence bond theory... [Pg.1296]

Buckminsterfullerene (Cm or Buckyball ) is structurally related to corannulene. In which molecule would you expect 7U-orbital overlap be more effective Explain. How many chemically unique carbons are there in C6o Measure CC bond distances. How many unique distances are there Is each benzene fully delocalized or is one resonance contributor more important than the other ... [Pg.179]

Figure 16-3D shows the simplified representation of the interaction of two helium atoms. This time each helium atom is crosshatched before the two atoms approach. This is to indicate there are already two electrons in the Is orbital. Our rule of orbital occupancy tells us that the Is orbital can contain only two electrons. Consequently, when the second helium atom approaches, its valence orbitals cannot overlap significantly. The helium atom valence electrons fill its valence orbitals, preventing it from approaching a second atom close enough to share electrons. The helium atom forms no chemical bonds. ... [Pg.278]

Radicals with adjacent Jt-bonds [e.g. allyl radicals (7), cyclohexadienyl radicals (8), acyl radicals (9) and cyanoalkyl radicals (10)] have a delocalized structure. They may be depicted as a hybrid of several resonance forms. In a chemical reaction they may, in principle, react through any of the sites on which the spin can be located. The preferred site of reaction is dictated by spin density, steric, polar and perhaps other factors. Maximum orbital overlap requires that the atoms contained in the delocalized system are coplanar. [Pg.13]

Both phenomena attest to the covalency of the chemical bonding in these species. Incidentally, they also highlight the different characters and implications of the spectrochemical and nephelauxetic series. Within either lanthanoid- or (higher oxidation state) J-block species, the ligand orbitals overlap with the metal s functions... [Pg.204]

The Lewis stmcture of a molecule shows how its valence electrons are distributed. These stmctures present simple, yet information-filled views of the bonding in chemical species, hi the remaining sections of this chapter, we build on Lewis stmctures to predict the shapes and some of the properties of molecules. In Chapter 10. we use Lewis stmctures as the starting point to develop orbital overlap models of chemical bonding. [Pg.602]

Consider two well-separated atoms A and B with electron wave functions and which are eigen functions of the atoms, with energies and ei. If we bring these atoms closer, the wave functions start to overlap and form combinations that describe the chemical bonding of the atoms to form a molecule. We will neglect the spin of the electrons. The procedure is to construct a new wave function as a linear combination of atomic orbitals (LCAO), which for one electron has the form... [Pg.219]

The use of MO theory to find deep minima in the So surface, or geometries of stable molecules, is well known. A simplified rule would be to choose the geometry so as to allow efficient overlap of valence orbitals of the constituent atoms in a way giving bonding orbitals for all available electrons from pairs or larger sets of suitably hybridized atomic orbitals. No atomic orbitals occupied by one electron should be left over dangling free and unable to interact with others, since that would give radicals, biradicals, etc. Chemical intuition allows one to proceed almost automatically in cases of molecules of familiar types. [Pg.35]

Sigma (a) bonds Sigma bonds have the orbital overlap on a line drawn between the two nuclei, simple cubic unit cell The simple cubic unit cell has particles located at the corners of a simple cube, single displacement (replacement) reactions Single displacement reactions are reactions in which atoms of an element replace the atoms of another element in a compound, solid A solid is a state of matter that has both a definite shape and a definite volume, solubility product constant (/ p) The solubility product constant is the equilibrium constant associated with sparingly soluble salts and is the product of the ionic concentrations, each one raised to the power of the coefficient in the balanced chemical equation, solute The solute is the component of the solution that is there in smallest amount, solution A solution is defined as a homogeneous mixture composed of solvent and one or more solutes. [Pg.365]

The two eflPects above constitute what is called central field covalency since they aflFect both the a and the tt orbitals on the metal to the same extent. There is also, of course, symmetry restricted covalency which acts difiFerently on metal orbitals of diflFerent symmetries. This type of covalency shows up in optical absorption spectra as differences in the values of Ps and p -, as compared with 35. The first two s refer to transitions within a given symmetry subshell while 635 refers to transitions between the two subshells. This evidence of covalency almost of necessity forces one to admit the existence of chemical bonds since it is difficult to explain on a solely electrostatic model. The expansion of the metal orbitals can be caused either by backbonding to vacant ligand orbitals, or it may be a result of more or less extensive overlap of ligand electron density in the bond region. Whether or not this overlap density can properly be assigned metal 3d character is what we questioned above. At any... [Pg.90]

Generally, for chemical adsorption a significant overlap between substrate and electrode orbitals is needed, that is, a weak chemical bond has to be established. This implies that there must be an orientation effect, depending on the symmetry of orbitals involved, and the substrate molecule must be fairly close to the electrode surface. [Pg.105]


See other pages where Orbital overlap chemical bonds is mentioned: [Pg.202]    [Pg.100]    [Pg.301]    [Pg.6]    [Pg.6]    [Pg.277]    [Pg.390]    [Pg.198]    [Pg.4]    [Pg.658]    [Pg.24]    [Pg.390]    [Pg.151]    [Pg.20]    [Pg.138]    [Pg.444]    [Pg.41]    [Pg.27]    [Pg.4]    [Pg.752]    [Pg.28]    [Pg.233]    [Pg.313]    [Pg.314]    [Pg.260]    [Pg.23]    [Pg.26]    [Pg.181]    [Pg.270]    [Pg.338]    [Pg.108]    [Pg.44]    [Pg.212]    [Pg.71]    [Pg.15]    [Pg.277]   
See also in sourсe #XX -- [ Pg.273 , Pg.274 , Pg.274 , Pg.275 ]




SEARCH



6 bond overlap

Bonding overlap

Orbital overlap

Orbitals overlap

Orbitals overlapping

© 2024 chempedia.info