Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characteristics nickel metal hydroxide

The extent of hydrolysis of (MY)(n 4)+ depends upon the characteristics of the metal ion, and is largely controlled by the solubility product of the metallic hydroxide and, of course, the stability constant of the complex. Thus iron(III) is precipitated as hydroxide (Ksal = 1 x 10 36) in basic solution, but nickel(II), for which the relevant solubility product is 6.5 x 10 l8, remains complexed. Clearly the use of excess EDTA will tend to reduce the effect of hydrolysis in basic solutions. It follows that for each metal ion there exists an optimum pH which will give rise to a maximum value for the apparent stability constant. [Pg.60]

In terms of kinetics and mechanisms, electroless deposition processes have many similarities. In an attempt to analyze the electroless deposition, several mechanisms such as atomic hydrogen, hydride ion, metal hydroxide, electrochemical, and universal have been proposed.1-3 It is important to note that these mechanisms were developed for cases of nickel and copper electroless deposition, which were the most widely studied metals in this respect. Based on the proposed mechanisms, most of the features of electroless deposition can be explained. However, there are some characteristics of electroless deposition, which cannot be explained using these mechanisms. The major problems arise when attempting to generalize the proposed models explaining the mechanistic aspects. [Pg.252]

Whatever the precursor, the formation of an intermediate solid phase was always observed. It can be inferred from X-ray diffraction (Fig. 9.2.7) and infrared spectroscopy that this intermediate phase shows a lamellar, incompletely ordered structure (turbostratic structure) built up with parallel and equidistant sheets like those involved in the lamellar structure of the well-crystallized hydroxides Ni(OH)2 or Co(OH)2, these sheets are disoriented with intercalation of polyol molecules and partial substitution of hydroxide ions by alkoxy ions (29). The dissolution of this solid phase, which acts as a reservoir for the M(I1) solvated species, controls the concentration of these species and then plays a significant role in the control of the nucleation of the metal particles and therefore of their final morphological characteristics. For instance, starting from cobalt or nickel hydroxide as precursor in ethylene glycol, the reaction proceeds according to the following scheme (8) ... [Pg.471]

It is suggested that the anodic dissolution will be inhibited if the adsorbed anion and the reaction intermediate are stable and hardly dissolve in aqueous solution. On the contrary, if the reaction intermediate is relatively unstable and readily dissolves into aqueous solution, the anion will function as an electrocatalyst accelerating the metal dissolution rate. It is now common knowledge that hydroxide ions, OH, catalyze the anodic dissolution of metallic iron and nickel in acid solution [81,82]. It is also known that chloride ions inhibit the anodic dissolution of iron in acidic solution [83]. No clear-cut understanding is however seen in literature on why hydroxide ions catalyze but chloride ions inhibit the anodic dissolution of iron, even though the two kinds of anions are in the same group of hard base. We assume that the hardness level in the Lewis base of adsorbed anions will be one of the most effective factors that determine the catalytic activity of the adsorbates. Further clarification on the catalytic characteristics will require a quantum chemical approach to the adsorption of these anions on the metal surface. [Pg.579]

Both Ni/MH and Li-ion batteries do contain hazardous materials. Niekel/metal hydride battery packs, of course, contain nickel, which is a suspected carcinogen in some forms. However, the only hazardous material in a Ni/MH battery, as defined by federal regulations, is the potassium hydroxide (KOH)-based electrolyte (corrosive). The only characteristic hazard of any consequence for the electrode materials in these batteries is toxicity. The hazard level is determined by a test called the toxicity characteristic... [Pg.306]

In the search for battery materials with better performance characteristics, the parent nickel hydroxide system has been modified by the inclusion of other metal ions. The EQCM has been used to monitor redox-driven ion and solvent transfers in sol-gel derived nickel-cobalt oxide films [79] and, through the solvent-transfer signature shown in Fig. 12, phase changes in electroprecipitated Co-Ni(OH)2 films [78]. An as-prepared Co-Ni(OH)2... [Pg.251]


See other pages where Characteristics nickel metal hydroxide is mentioned: [Pg.66]    [Pg.175]    [Pg.413]    [Pg.66]    [Pg.887]    [Pg.2626]    [Pg.28]    [Pg.259]    [Pg.23]    [Pg.481]    [Pg.278]    [Pg.845]    [Pg.259]    [Pg.23]    [Pg.898]    [Pg.34]   
See also in sourсe #XX -- [ Pg.19 , Pg.20 , Pg.21 ]




SEARCH



Metal characteristics

Metal hydroxides

Metal nickel

Metallic hydroxide

Metallic nickel

Nickel characteristics

Nickel hydroxide

Nickelous hydroxide

© 2024 chempedia.info