Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Change with Time

Reduction of a submerged soil proceeds roughly in the sequence predicted by thermodynamics  [Pg.109]

4N03 + 5CH2O 2Mn02 + CH2O 4Ee(OH)3 + CH2O S04 + 2CH2O [Pg.109]

Typically O2 becomes undetectable within a day of submergence and then NO3 is reduced. Reduction of NO3 will not occur until the O2 concentration reaches a very small value. Likewise, whilst NO3 is being reduced, the pe is poised in the range 3-6 and reduction of Mn and Fe are prevented. However NOs will be exhausted within a matter of days and then reduction of Mn and Fe may proceed. [Pg.109]

In the absence of O2 Fe(III) is generally the main oxidant in the soil, its concentration typically exceeding concentrations of NO3, Mn(III, IV) or S04 by at least an order of magnitude (Chapter 3). Between 1 and 20 % and sometimes as much as 90% of the free Fe(III) in the soil is reduced to Fe(II) over 1-2 months of submergence (Ponnamperuma, 1972 van Breemen, 1988). Some of the structural Fe(III) in soil clays is also reduced (Stuck et al., 1997). The course of soil reduction and the changes in pe and pH are therefore generally dominated by the reduction of Fe(III). [Pg.109]

It is difficult to obtain reliable measurements of En and hence pe in soils. Strictly, only measurements made with the electrodes in soil solution extracts rather than directly in soil are thermodynamically meaningful, and these are also subject to various errors, particularly due to the presence of mixed redox systems. Nonetheless it is a useful parameter and is the only single electrochemical property that can distinguish submerged soils from well-drained ones. [Pg.109]


The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

Close inspection of equation (A 1.1.45) reveals that, under very special circumstances, the expectation value does not change with time for any system properties that correspond to fixed (static) operator representations. Specifically, if tlie spatial part of the time-dependent wavefiinction is the exact eigenfiinction ). of the Hamiltonian, then Cj(0) = 1 (the zero of time can be chosen arbitrarily) and all other (O) = 0. The second tenn clearly vanishes in these cases, which are known as stationary states. As the name implies, all observable properties of these states do not vary with time. In a stationary state, the energy of the system has a precise value (the corresponding eigenvalue of //) as do observables that are associated with operators that connmite with ft. For all other properties (such as the position and momentum). [Pg.14]

So long as the field is on, these populations continue to change however, once the external field is turned off, these populations remain constant (discounting relaxation processes, which will be introduced below). Yet the amplitudes in the states i and i / do continue to change with time, due to the accumulation of time-dependent phase factors during the field-free evolution. We can obtain a convenient separation of the time-dependent and the time-mdependent quantities by defining a density matrix, p. For the case of the wavefiinction ), p is given as the outer product of v i) with itself. [Pg.229]

Furthemiore, IVR is not rapid between the C2H4 intramolecular modes and different excitation patterns of these modes result in different dissociation rates. As a result of these different timescales for dissociation, the relative populations of the vibrational modes of the C2H4 dimer change with time. [Pg.1037]

Figure 7.9 shows a schematic representation of this effect, in which the ratio of the two isotopes changes with time. To obtain an accurate estimate of the ratio of ion abundances, it is better if the relative ion yields decrease linearly (Figure 7.9) which can be achieved by adjusting the filament temperature continuously to obtain the desired linear response. An almost constant response for the isotope ratio can be obtained by slow evaporation of the sample, viz., by keeping the filament temperature as low as is consistent with sufficient sensitivity of detection (Figure 7.9). [Pg.52]

Variations in the Force Due to Gravity. The mass of an object is the quantity of matter ia the object. It is a fundamental quantity that is fixed, and does not change with time, temperature, location, etc. The standard for mass is a platinum—iridium cylinder, called the International Kilogram, maintained at the International Bureau of Weights and Measures, ia Snvres, France. The mass of this cylinder is 1 kg by definition (9). AH national mass standards are traceable to this artifact standard. [Pg.330]

Modem real time instmmental methods permit analyses of unstable transient species and the free-radical intermediates as well. These methods have gready expanded the scope and power of VPO studies, but important basic questions remain unresolved. Another complication is the role of surface. Peroxide decompositions and radical termination reactions can occur on a surface so that, depending on circumstances, surfaces can have either an inhibiting or accelerating effect. Each surface has varying amounts of adventitious contaminants and also accumulates deposits during reaction. Thus no two surfaces are exactly alike and each changes with time. [Pg.338]

Fig. 16. Typical composition change with time for conversion of two homopolymers (° ), first to a block (D), and then to a random (A ) copolymer. Fig. 16. Typical composition change with time for conversion of two homopolymers (° ), first to a block (D), and then to a random (A ) copolymer.
Saline waters, including seawater, contain, besides a variety of inorganic salts, also organic materials and various particles. They differ in composition from site to site, and also change with time as a result of both natural and human causes. Design and operation of desalination plants requires good knowledge of the saline water composition and properties (41,44). [Pg.242]

Hydrous Oxides and Hydroxides. Hydroxide addition to aqueous zirconium solutions precipitates a white gel formerly called a hydroxide, but now commonly considered hydrous zirconium oxide hydrate [12164-98-6], 7 0 - 112 0. However, the behavior of this material changes with time and temperature. [Pg.436]

The performance of the dmg dehvery system needs to be characterized. The rate of dmg release and the total amount of dmg loaded into a dmg dehvery system can be deterrnined in a dissolution apparatus or in a diffusion ceU. Typically, the dmg is released from the dmg dehvery system into a large volume of solvent, such as water or a buffer solution, that is maintained at constant temperature. The receiver solution is weU stirred to provide sink conditions. Samples from the dissolution bath are assayed periodically. The cumulative amount released is then plotted vs time. The release rate is the slope of this curve. The total dmg released is the value of the cumulative amount released that no longer changes with time. [Pg.234]

However, conductive elastomers have only ca <10 of the conductivity of soHd metals. Also, the contact resistance of elastomers changes with time when they are compressed. Therefore, elastomers are not used where significant currents must be carried or when low or stable resistance is required. Typical apphcations, which require a high density of contacts and easy disassembly for servicing, include connection between Hquid crystal display panels (see Liquid crystals) and between printed circuit boards in watches. Another type of elastomeric contact has a nonconducting silicone mbber core around which is wrapped metalized contacts that are separated from each other by insulating areas (25). A newer material has closely spaced strings of small spherical metal particles in contact, or fine soHd wires, which are oriented in the elastomer so that electrical conduction occurs only in the Z direction (26). [Pg.31]

Discussion of the UV spectra of heteroaromatic molecules has changed with time, from the classical way illustrated by the Italian publications (56G797) to the modern quantum mechanical calculations. [Pg.197]

Steady state pi oblems. In such problems the configuration of the system is to be determined. This solution does not change with time but continues indefinitely in the same pattern, hence the name steady state. Typical chemical engineering examples include steady temperature distributions in heat conduction, equilibrium in chemical reactions, and steady diffusion problems. [Pg.425]

Unsteady material and energy balances are formulated with the conservation law, Eq. (7-68). The sink term of a material balance is and the accumulation term is the time derivative of the content of reactant in the vessel, or 3(V C )/3t, where both and depend on the time. An unsteady condition in the sense used in this section always has an accumulation term. This sense of unsteadiness excludes the batch reactor where conditions do change with time but are taken account of in the sink term. Startup and shutdown periods of batch reactors, however, are classified as unsteady their equations are developed in the Batch Reactors subsection. For a semibatch operation in which some of the reactants are preloaded and the others are fed in gradually, equations are developed in Example 11, following. [Pg.702]

Ordinaiy differential Eqs. (13-149) to (13-151) for rates of change of hquid-phase mole fractious are uouhuear because the coefficients of Xi j change with time. Therefore, numerical methods of integration with respect to time must be enmloyed. Furthermore, the equations may be difficult to integrate rapidly and accurately because they may constitute a so-called stiff system as considered by Gear Numerical Initial Value Problems in Ordinaiy Differential Equations, Prentice Hall, Englewood Cliffs, N.J., 1971). The choice of time... [Pg.1339]


See other pages where Change with Time is mentioned: [Pg.28]    [Pg.72]    [Pg.330]    [Pg.227]    [Pg.1076]    [Pg.1216]    [Pg.2729]    [Pg.320]    [Pg.398]    [Pg.408]    [Pg.8]    [Pg.425]    [Pg.228]    [Pg.592]    [Pg.622]    [Pg.52]    [Pg.43]    [Pg.365]    [Pg.8]    [Pg.295]    [Pg.87]    [Pg.417]    [Pg.431]    [Pg.481]    [Pg.64]    [Pg.519]    [Pg.191]    [Pg.406]    [Pg.297]    [Pg.515]    [Pg.231]    [Pg.191]    [Pg.536]    [Pg.1337]    [Pg.1337]   


SEARCH



© 2024 chempedia.info