Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain initiation Lewis acid

The stereoselectivity of the boron trifluoride induced reactions was initially discussed in terms of open-chain, antiperiplanar transition states66. However studies of Lewis acid induced intramolecular allylstannane-aldehyde reactions are supportive of a synclinal process56,67. [Pg.370]

If anions, built during the initiation by means of HY/MtXn from Lewis acids, form a covalent species, a chain termination is the result according to ... [Pg.212]

Unlike radical chain polymerisation, initiation in cationic polymerisation uses a true catalyst that is recovered at the end of the polymerisation and is not incorporated at one end of the growing chain. Catalysts for cationic chain polymerisation are molecules able to withdraw electrons, mainly Bronsted (H2SC>4, H3PO4) and Lewis acids (BF3, A1C13, SnCh). The choice of solvent for cationic polymerisation is also important because it plays a major role in the association between cation and counter ion. A too tight association will prevent monomer insertion during the propagation step. However, the use of "stabilized"... [Pg.42]

Ionic polymerization may also occur with cationic initiations such as protonic acids like HF and H2SO4 or Lewis acids like BF3, AICI3, and SnC. The polymerization of isobutylene is a common example, shown in Fig. 14.5. Note that the two inductively donating methyl groups stabilize the carbocation intermediate. Chain termination, if it does occur, usually proceeds by loss of a proton to form a terminal double bond. This regenerates the catalyst. [Pg.253]

The active site is a cationic metallocene alkyl generated by reaction of a neutral metallocene formed from reaction with excess MAO or other suitable cocatalysts such as a borane Lewis acid. This sequence is shown in Figure 5.1 employing MAO with ethylene to form PE. Initiation and propagation occur through pre-coordination and insertion of the ethylene into the alkyl group polymer chain. Here, termination occurs through beta-hydride elimination... [Pg.151]

ROP of p-lactones is highly prone to numerous side reactions, such as transester-fication, chain-transfer or multiple hydrogen transfer reactions (proton or hydride). Specifically, the latter often causes unwanted functionalities such as crotonate and results in loss over molecular weight control. Above all, backbiting decreases chain length, yielding macrocyclic structures. All these undesired influences are dependent on the reaction conditions such as applied initiator or catalyst, temperature, solvent, or concentration. The easiest way to suppress these side reactions is the coordination of the reactive group to a Lewis acid in conjunction with mild conditions [71]. p-BL can be polymerized cationically and enzymatically but, due to the mentioned facts, the coordinative insertion mechanism is the most favorable. Whereas cationic and enzymatic mechanisms share common mechanistic characteristics, the latter method offers not only the possibility to influence... [Pg.69]

Application of metal salts and well-defined metal complexes in ROP has enabled the exploitation of a three-step coordination-insertion mechanism, first formulated in 1971 by Dittrich and Schulz [17]. This proceeds through coordination of lactide by the carbonyl oxygen to the Lewis acidic metal center, leading to the initiation and subsequent propagation by a metal alkoxide species. This species can be either isolated or generated in situ by addition of an alcohol to a suitable metal precursor to result in the formation of a new chain-extended metal alkoxide, as shown in Scheme 3 [16]. [Pg.223]

Immortal polymerization of epoxides with la and an alcohol is also accelerated by co-use of bulky Lewis acid 2a. The polymerization of PO with la/2-propanol system ([PO]/[la]/[2-propanol] = 1000/1/49) in the presence of 2a ([PO]/[2a] = 1000/1) proceeds rapidly to achieve 86% conversion in 1.5 h, while the polymerization in the absence of 2a requires 380 h to reach 84% conversion (Table 1). The polyether produced in the presence of 2a has an of 900 gmoP and an MJM of 1.10, which indicates that almost all of la and 2-propanol participate in the initiation of the polymerization. Other protic chain-transfer reagents, such as methanol, benzyl alcohol, and 4-/ r/-butylphenol, are also applicable to the high-speed immortal polymerization to give similar results as 2-propanol. As a substrate, ECH is also employable. Polymerization of ECH ([EGH]/[la]/[2-propanol]/[2a] = 1000/1/49/1) gives a polymer with and/n of 1100gmol close to the value estimated from the conversion and [PO]/([la] + [2-propanol]) ratio, and a narrow M IM of 1.10, while the conversion is lower than the case of PO. [Pg.600]


See other pages where Chain initiation Lewis acid is mentioned: [Pg.224]    [Pg.2468]    [Pg.2468]    [Pg.366]    [Pg.352]    [Pg.516]    [Pg.397]    [Pg.292]    [Pg.480]    [Pg.534]    [Pg.424]    [Pg.947]    [Pg.66]    [Pg.3]    [Pg.197]    [Pg.61]    [Pg.214]    [Pg.197]    [Pg.46]    [Pg.33]    [Pg.24]    [Pg.30]    [Pg.114]    [Pg.153]    [Pg.662]    [Pg.686]    [Pg.142]    [Pg.6]    [Pg.209]    [Pg.300]    [Pg.29]    [Pg.500]    [Pg.195]    [Pg.107]    [Pg.112]    [Pg.133]    [Pg.597]    [Pg.598]    [Pg.599]    [Pg.602]    [Pg.60]    [Pg.69]    [Pg.86]   
See also in sourсe #XX -- [ Pg.375 , Pg.376 , Pg.377 , Pg.378 ]

See also in sourсe #XX -- [ Pg.375 , Pg.376 , Pg.377 , Pg.378 ]




SEARCH



Acid initiation

Chain initiation

Chain initiators

© 2024 chempedia.info