Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potentials ceruloplasmin

Different chemical environments surrounding the T1 copper result in different redox potentials. Fungal laccases demonstrate the highest potential, close to the equilibrium potential of oxygen reduction in their respective pH regions (see Table 1). Laccases, however, are anion sensitive, with deactivation involving dissociation of T2 copper from the active site of the enzyme. Alternative copper oxidases such as bilirubin oxidase and ceruloplasmin ° ... [Pg.634]

Ceruloplasmin is involved in copper storage and transport as well as in iron mobilisation and oxidation. Among the blue oxidases it is unique since it contains, in addition to the usual motif of a type 1 combined with the trinuclear cluster, two other type 1 coppers. Electron transfer occurs, however, only between five of the six copper ions since one of the type 1 centres is not catalytically relevant due to its too high redox potential. The redox potentials of the centres were determined and possible electron transfer pathways among the copper sites were discussed.101... [Pg.128]

Visible MCD spectra of plastocyanin, azurin, Rhus vernicifera laccase, ascorbate oxidase and ceruloplasmin are similar on a per copper basis, but show differences from those of stellacyanin and fungal laccase. This is of interest in view of the absence of methionine from the coordination sphere of copper in stellacyanin, and the very high redox potential of fungal laccase.925... [Pg.652]

Redox potentials for the different copper centers in the blue oxidases have been determined for all members of the group but in each case only for a limited number of species. The available data are summarized in Table VI 120, 121). The redox potentials for the type-1 copper of tree laccase and ascorbate oxidase are in the range of 330-400 mV and comparable to the values determined for the small blue copper proteins plastocyanin, azurin, and cucumber basic protein (for redox potentials of small blue copper proteins, see the review of Sykes 122)). The high potential for the fungal Polyporus laccase is probably due to a leucine or phenylalanine residue at the fourth coordination position, which has been observed in the amino-acid sequences of fungal laccases from other species (see Table IV and Section V.B). Two different redox potentials for the type-1 copper were observed for human ceruloplasmin 105). The 490-mV potential can be assigned to the two type-1 copper sites with methionine ligand and the 580-mV potential to the type-1 center with the isosteric leucine at this position (see Section V.B). The... [Pg.155]

Redox Potentials of the Electron Accepting Sites in Ceruloplasmin... [Pg.36]

As for iron, differences in redox potentials are relatively small between the major oxidation states of copper, that is, Cu(I) and Cu(II). This gives copper its main function as a cofactor in enzymatic reactions involving electron-transfer processes. In the human body, most of the copper (about 40%) is present in muscle tissue with significant amounts also present in the liver, brain, and skeleton. About 5% of the copper can be found in serum, of which 80-90% is present as ceruloplasmin. Ceruloplasmin in serum and hephaestin at the basolateral side of the mucosa ensure oxidation of circulating Fe to Fe for iron binding to transferrin. Unbound Fe is a major source of oxidative stress through Fenton/Haber-Weiss chemistry. Copper together with zinc is also a cofactor for superoxide dismutase, a key molecule in the anti-oxidant defense system of the body ]74]. [Pg.474]

Studies on the catalatic activity of additional Cu" chelates confirm the previous conclusions that the complex must possess a suitable redox potential and two adjacent free sites to promote the efficient decomposition of H2O2. Malmstrom has discussed the asymmetric nature of oxidases which contain several copper atoms per molecule, including laccase and ceruloplasmin. The rate constant for the reaction of the hydrated electron... [Pg.242]

Blue multicopper oxidases (BMCOs) such as laccase, ceruloplasmin, bilirubin oxidase (BOx), and ascorbate oxidase (AOx) have been extensively investigated as cathodic biocatalysts for DET-based biodevices [44]. BMCOs have a catalytic center consisting of four coppers a type 1 (Tl) Cu site, which accepts electrons from the substrate and from the electrode surface, and a type 2/type 3 (T2/T3) cluster, where O2 is reduced directly to water. High redox potential laccases and BOx, with redox potential up to 780 and 670 mV versus normal hydrogen electrode (NHE), respectively [44,45], can be used to create efficient biocathodes with current densities up to a few mA cm . In 2012, Shleev and coworkers used the DET ability of these enzymes to create several completely DET-based BFCs [42]. The enzymes have also been used in different MET-based approaches [46,47] specifically, Heller and coworkers... [Pg.428]

The reduction potential is central for the function of electron-transfer proteins, since it determines the driving force of the reaction. In particular, it must be poised between the reduction potentials of the donor and acceptor species. Therefore, electron-transfer proteins normally have to modulate the reduction potential of the redox-active group. This is very evident for the blue copper proteins, which show reduction potentials ranging from 184 mV for stellacyanin to 1000 mV for the type 1 copper site in domain 2 of ceruloplasmin [1,110,111]. [Pg.28]


See other pages where Redox potentials ceruloplasmin is mentioned: [Pg.241]    [Pg.243]    [Pg.286]    [Pg.142]    [Pg.143]    [Pg.143]    [Pg.32]    [Pg.35]    [Pg.36]    [Pg.357]    [Pg.238]    [Pg.239]    [Pg.114]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Ceruloplasmin

Redox potentials

© 2024 chempedia.info