Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cells and Orientation

The crystal stmcture of PPT is pseudo-orthorhombic (essentially monoclinic) with a = 0.785/nm b = 0.515/nm c (fiber axis) = 1.28/nm and d = 90°. The molecules are arranged in parallel hydrogen-bonded sheets. There are two chains in a unit cell and the theoretical crystal density is 1.48 g/cm. The observed fiber density is 1.45 g/cm. An interesting property of the dry jet-wet spun fibers is the lateral crystalline order. Based on electron microscopy studies of peeled sections of Kevlar-49, the supramolecular stmcture consists of radially oriented crystaUites. The fiber contains a pleated stmcture along the fiber axis, with a periodicity of 500—600 nm. [Pg.66]

Because the cells can intermpt the optical path in random orientations, individual scattering intensities are not proportional to cell volume. However, because thousands of cells of each type pass through the flow cell, the effects of orientation can be averaged To a first approximation HCT and platelet crit (PCT), the percentage of blood sample volume occupied by platelets, is proportional to the sums of the scattering intensities of the ted cells and platelets, respectively. MCV can be computed from HCT and RBC, whereas MPV can be computed from PCT and PLT. The accuracy of MCV deterrnined by this method is tied to the RBC accuracy, as is the case for the manual MCV method. Ortho Instmments Corporation s ELT-8 uses these counting and sizing methods. [Pg.403]

The DEP of numerous particle types has been studied, and many apphcations have been developed. Particles studied have included aerosols, glass, minerals, polymer molecules, hving cells, and cell organelles. Apphcations developed include filtration, orientation, sorting or separation, characterization, and levitation and materials handhng. Effects of DEP are easily exhibited, especially by large particles, and can be apphed in many useful and desirable ways. DEP effects can, however, be observed on particles ranging in size even down to the molecular level in special cases. Since thermal effects tend to disrupt DEP with molecular-sized particles, they can be controlled only under special conditions such as in molecular beams. [Pg.2010]

Biological membranes provide the essential barrier between cells and the organelles of which cells are composed. Cellular membranes are complicated extensive biomolecular sheetlike structures, mostly fonned by lipid molecules held together by cooperative nonco-valent interactions. A membrane is not a static structure, but rather a complex dynamical two-dimensional liquid crystalline fluid mosaic of oriented proteins and lipids. A number of experimental approaches can be used to investigate and characterize biological membranes. However, the complexity of membranes is such that experimental data remain very difficult to interpret at the microscopic level. In recent years, computational studies of membranes based on detailed atomic models, as summarized in Chapter 21, have greatly increased the ability to interpret experimental data, yielding a much-improved picture of the structure and dynamics of lipid bilayers and the relationship of those properties to membrane function [21]. [Pg.3]

Transfer matrix calculations of the adsorbate chemical potential have been done for up to four sites (ontop, bridge, hollow, etc.) or four states per unit cell, and for 2-, 3-, and 4-body interactions up to fifth neighbor on primitive lattices. Here the various states can correspond to quite different physical systems. Thus a 3-state, 1-site system may be a two-component adsorbate, e.g., atoms and their diatomic molecules on the surface, for which the occupations on a site are no particles, an atom, or a molecule. On the other hand, the three states could correspond to a molecular species with two bond orientations, perpendicular and tilted, with respect to the surface. An -state system could also be an ( - 1) layer system with ontop stacking. The construction of the transfer matrices and associated numerical procedures are essentially the same for these systems, and such calculations are done routinely [33]. If there are two or more non-reacting (but interacting) species on the surface then the partial coverages depend on the chemical potentials specified for each species. [Pg.452]

Here n is an operator of molecular axis orientation. In the classical description, it is just a unitary vector, directed along the rotator axis. Angle a sets the declination of the rotator from the liquid cage axis. Now a random variable, which is conserved for the fixed form of the cell and varies with its hopping transformation, is a joint set of vectors e, V, where V = VU...VL,.... Since the former is determined by a break of the symmetry and the latter by the distance between the molecule and its environment, they are assumed to vary independently. This means that in addition to (7.17), we have... [Pg.242]


See other pages where Cells and Orientation is mentioned: [Pg.443]    [Pg.178]    [Pg.161]    [Pg.297]    [Pg.961]    [Pg.120]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.443]    [Pg.178]    [Pg.161]    [Pg.297]    [Pg.961]    [Pg.120]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.285]    [Pg.460]    [Pg.670]    [Pg.240]    [Pg.491]    [Pg.448]    [Pg.401]    [Pg.402]    [Pg.403]    [Pg.61]    [Pg.194]    [Pg.457]    [Pg.898]    [Pg.670]    [Pg.535]    [Pg.248]    [Pg.1264]    [Pg.10]    [Pg.377]    [Pg.32]    [Pg.295]    [Pg.132]    [Pg.133]    [Pg.352]    [Pg.357]    [Pg.383]    [Pg.387]    [Pg.70]    [Pg.172]    [Pg.241]    [Pg.123]    [Pg.192]    [Pg.234]   


SEARCH



Cell orientation

© 2024 chempedia.info