Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reactions termination

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]

Before terminating the discussion of external mass transfer limitations on catalytic reaction rates, we should note that in the regime where external mass transfer processes limit the reaction rate, the apparent activation energy of the reaction will be quite different from the intrinsic activation energy of the catalytic reaction. In the limit of complete external mass transfer control, the apparent activation energy of the reaction becomes equal to that of the mass transfer coefficient, typically a kilocalorie or so per gram mole. This decrease in activation energy is obviously... [Pg.484]

Subsequent mechanistic studies suggested that the abovementioned effect of ethylene on reaction efficiency is connected to a mechanistic divergence that exists for reactions of terminal styrenyl ethers versus those of disubstituted styrene systems [13b]. Whereas with monosubstituted styrenyl substrates the initial site of reaction is the terminal alkene, with disubstituted styrene systems the cyclic ji-systems react first. This mechanistic scenario suggests two critical roles for ethylene in the catalytic reactions of disubstituted styrenes ... [Pg.127]

The proposed Re6 cluster (8) with terminal and bridged-oxygen atoms acts as a catalytic site for selective propene oxidation under a mixture of propene, Oz and NH3. When the Re6 catalyst is treated with propene and Oz at 673 K, the cluster is transformed back to the inactive [Re04] monomers (7), reversibly. This is the reason why the catalytic activity is lost in the absence of ammonia (Table 8.5). Note that NH3, which is not involved in the reaction equation for the acrolein formation (C3H6+02->CH2=CHCH0+H20) is a prerequisite for the catalytic reaction as it produces the active cluster structure under the catalytic reaction conditions. [Pg.248]

In 1997, Backvall and Jonasson published a procedure for the 1,2-oxidation of terminal allenes 7 [5]. In this case the reaction conditions were chosen so that the (vinyl)palladium complex equilibrates back to the allene complex. Using bromide instead of chloride as a nucleophile, the 2-bromo-jt-allyl complex 9 is the major intermediate present in the reaction mixture. A catalytic reaction was developed with the use of 5 mol% palladium acetate and p-benzoquinone (BQ) as terminal oxidant (Scheme 17.5). [Pg.976]

A modification of an earlier procedure for debromination of v/c-dibromides in the presence of catalytic amounts of diorganotellurides has allowed the synthesis of terminal alkenes and cis- and frani-l,2-disubstituted alkenes from appropriate precursors the relative substrate reactivities suggest that, as for the stoichiometric reaction, the catalytic reaction involves intermediate bromonium ion formation. The Te(IV) dibromides formed in the debrominative elimination are reduced back to the catalysts by either sodium ascorbate or the thiol glutathione. [Pg.411]

Surface reaction steps are frequently very important in controlling chain reactions. [Catalytic reactions again ] For example, the termination steps by which free-radical intermediates are removed will frequently occur readily on surfaces simply by adsorption. We can write this reaction as... [Pg.407]

Ru-catalysed oxidations [221, 260], and has a susbtantial solnbility in CH CN. It seems likely that a 41-0x0 dimer snch as [(py) (OH)Ru ( 4-0)Rn" (OH)(py) ] conld be formed which is inert to further oxidation and so terminates the catalytic reaction (a similar situation is found with some oxo-Ru(VI) porphyrin complexes). Another possibility is that unreactive polymeric Ru species are formed [241],... [Pg.53]

Highly reactive organic vinylidene and allenylidene species can be stabilized upon coordination to a metal center [1]. In 1979, Bruce et al. [2] reported the first ruthenium vinylidene complex from phenylacetylene and [RuCpCl(PPh3)2] in the presence of NH4PF6. Following this report, various mthenium vinylidene complexes have been isolated and their physical and chemical properties have been extensively elucidated [3]. As the a-carbon of ruthenium vinylidenes and the a and y-carbon of ruthenium allenylidenes are electrophilic in nature [4], the direct formation of ruthenium vinylidene and ruthenium allenylidene species, respectively, from terminal alkynes and propargylic alcohols provides easy access to numerous catalytic reactions since nucleophilic addition at these carbons is a viable route for new catalysis (Scheme 6.1). [Pg.193]

Reactions of substituted a-ketoalkynes (RC=CCOR ) with 6-amino-l,3-dimethyluracil and a water-soluble nickel catalytic system [Ni(CN)2-CO-KCN-NaOH] afforded 2,4-dioxopyrido[2,3- pyrimidine derivatives 532 under very mild conditions (room temperature and atmospheric pressure). The mechanism involved a nucleophilic attack by Ni(0), formed in situ, onto the triple bond of the substrate. The reaction terminates within 30 min, giving 98% of 532, while in the absence of this catalytic system the reaction took a longer time (lOh) to reach a maximum yield of 30% <2001J(P1)2341>. A regioselective interaction of 6-aminouracil derivatives with GF3COCH2COR in boiling AcOH afforded the cyclized 5-trifluoromethylpyrido[2,3-, pyrimidines 533 <200381531 >. [Pg.817]

Glyceraldehyde-3-phosphate dehydrogenase is a homotetramer that carries out the oxidative phosphorylation of glyceraldehyde-3-phosphate into 1,3-bisphos- phoglycerate. During this reaction NADH is formed. Each subunit of the enzyme consists of two domains and has an NAD+ binding site. The N-terminal domain anchors the adenosine portion of the cofactor while the nicotinamide portion is involved in the catalytic reaction at the C-terminal domain. T brucei... [Pg.372]


See other pages where Catalytic reactions termination is mentioned: [Pg.289]    [Pg.289]    [Pg.311]    [Pg.481]    [Pg.33]    [Pg.21]    [Pg.5]    [Pg.655]    [Pg.51]    [Pg.357]    [Pg.571]    [Pg.148]    [Pg.210]    [Pg.210]    [Pg.115]    [Pg.402]    [Pg.891]    [Pg.284]    [Pg.50]    [Pg.262]    [Pg.163]    [Pg.118]    [Pg.394]    [Pg.51]    [Pg.48]    [Pg.193]    [Pg.307]    [Pg.159]    [Pg.218]    [Pg.245]    [Pg.247]    [Pg.355]    [Pg.74]    [Pg.440]    [Pg.13]    [Pg.458]    [Pg.403]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Reaction terminating

Reaction, terminal

Termination of the Metal-promoted or catalysed Reactions and a Catalytic Cycle

Termination reaction

© 2024 chempedia.info