Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic platinum catalyst

Catalytic reduction over a platinum catalyst fails because of poisoning of the catalyst (101). [Pg.535]

Catalytic oxidation ia the presence of metals is claimed as both nonspecific and specific for the 6-hydoxyl depending on the metals used and the conditions employed for the oxidation. Nonspecific oxidation is achieved with silver or copper and oxygen (243), and noble metals with bismuth and oxygen (244). Specific oxidation is claimed with platinum at pH 6—10 ia water ia the presence of oxygen (245). Related patents to water-soluble carboxylated derivatives of starch are Hoechst s on the oxidation of ethoxylated starch and another on the oxidation of sucrose to a tricarboxyhc acid. AH the oxidations are specific to primary hydroxyls and are with a platinum catalyst at pH near neutraUty ia the presence of oxygen (246,247). Polysaccharides as raw materials ia the detergent iadustry have been reviewed (248). [Pg.483]

Catalytic Oxidation. Catalytic oxidation is used only for gaseous streams because combustion reactions take place on the surface of the catalyst which otherwise would be covered by soHd material. Common catalysts are palladium [7440-05-3] and platinum [7440-06-4]. Because of the catalytic boost, operating temperatures and residence times are much lower which reduce operating costs. Catalysts in any treatment system are susceptible to poisoning (masking of or interference with the active sites). Catalysts can be poisoned or deactivated by sulfur, bismuth [7440-69-9] phosphoms [7723-14-0] arsenic, antimony, mercury, lead, zinc, tin [7440-31-5] or halogens (notably chlorine) platinum catalysts can tolerate sulfur compounds, but can be poisoned by chlorine. [Pg.168]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

Reduction of isoindoles with dissolving metals or catalytically occurs in the pyrrole ring. Reduction of indolizine with hydrogen and a platinum catalyst gives an octahydro derivative. With a palladium catalyst in neutral solution, reduction occurs in the pyridine ring but in the presence of acid, reduction occurs in the five-membered ring (Scheme 38). Reductive metallation of 1,3-diphenylisobenzofuran results in stereoselective formation of the cw-1,3-dihydro derivative (Scheme 39) (80JOC3982). [Pg.61]

This method of preparation is suitable for producing primary alkyl lactates but is unsatisfactory for /3-methallyl lactate because the strong mineral acid catalyzes the rearrangement of methallyl alcohol to isobutyraldehyde. Methyl lactate can be made conveniently (80-85% yield) by heating 1 mole of lactic acid condensation polymer with 2.5-5 moles of methanol and a small quantity of sulfuric acid at 100 for 1-4 hours in a heavy-walled bottle, such as is used for catalytic hydrogenation with a platinum catalyst. [Pg.6]

Powerforming is one tecnique used for aromatics chemical production. Powerforming uses a platinum catalyst to reform virgin naphthas. The principal reaction is the conversion of naphthenes in virgin naphthas to aromatics e.g., isomerization and dehydrocyclization reactions also occur in catalytic reforming. [Pg.110]

Another group of reactions with the predominant cleavage of the ring comprises catalytic hydrogenation of isoxazole derivatives and has been investigated only recently. The most commonly used catalyst has been Raney nickel,but use has sometimes been made of platinum catalysts. Hydrogenolysis of the 0—N bond (172—>173) occurs in isoxazole, its homologs,and their functional derivatives, for example, isoxazole carboxylic acids- and 5-aminoisoxazoles. ... [Pg.415]

On catalytic hydrogenation over a platinum catalyst, ribose (Problem 9.57) is converted into ribitol. Is ribitol optically active or inactive Explain. [Pg.328]

While the discovery of the catalytic properties of zeolites was driven by the desire to improve industrial prcKessing, the development of emission control catalysts was necessitated by governmental fiat. The first requirement was for 90+% removal of CO and of hydrocarbons, a goal which could not be met by oxidation with base metal oxides. To achieve the required spedfications during automobile operations, it was necessary to develop supported platinum catalysts. Originally the support was alumina in pellet form. Later platinum on cordierite was used in honeycomb form, containing 200-400 square channels per square inch. [Pg.71]

It was found in the 1960s that disperse platinum catalyst supported by certain oxides will in a number of cases be more active than a similar catalyst supported by carbon black or other carbon carrier. At platinum deposits on a mixed carrier of WO3 and carbon black, hydrogen oxidation is markedly accelerated in acidic solutions (Hobbs and Tseung, 1966). This could be due to a partial spillover of hydrogen from platinum to the oxide and formation of a tungsten bronze, H WOj (0 < a < 1), which according to certain data has fair catalytic properties. [Pg.539]

It was seen when studying mixed systems Pt-WOj/C and Pt-Ti02/C that with increasing percentage of oxide in the substrate mix the working surface area of the platinum crystallites increases, and the catalytic activity for methanol oxidation increases accordingly. With a support of molybdenum oxide on carbon black, the activity of supported platinum catalyst for methanol oxidation comes close to that of the mixed platinum-ruthenium catalyst. [Pg.539]

The search for new, more highly active and less expensive materials for catalytic electrodes and the attempts at reducing the loading of expensive platinum catalysts has led to numerous studies in the area of binary and multicomponent metal systems. These included various metal alloys as well as mixed microdeposits containing several... [Pg.539]

To the contrary, mnlticomponent nonmetallic systems such as mixed oxides often provide the possibility for a smooth or discontinuous variation of electrophysical parameters, and thns for some adjustment of their catalytic properties. In a number of cases, one can do without expensive platinum catalysts, instead using nonmetallic catalysts. Serious research into the properties of nonmetallic catalytic electrodes was initiated in the 1960s in connection with broader efforts to realize various kinds of fuel cells. [Pg.542]

Jones AK, Sillery E, Albracht SPJ, Armstrong FA. 2002. Direct comparison of the electro-catalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem Commun 866-867. [Pg.632]

Hydrogenation of 3,4-hexanedione was used to compare the behaviour of different supported platinum catalysts. The highest rate has been obtained over Pt/MCM-41 catalyst. It was the only catalysts, where the rate constant k2 exceeded ki, i.e., there was no catalyst deactivation during the catalytic run. It is... [Pg.543]

Price and Schiewetz Ind Eng. Chem. 49 (807), 1957] have studied the catalytic liquid phase hydrogenation of cyclohexene in a laboratory scale semibatch reactor. A supported platinum catalyst was suspended in a cyclohexene solution of the reactant by mechanical... [Pg.532]


See other pages where Catalytic platinum catalyst is mentioned: [Pg.31]    [Pg.229]    [Pg.31]    [Pg.229]    [Pg.870]    [Pg.163]    [Pg.525]    [Pg.39]    [Pg.368]    [Pg.174]    [Pg.182]    [Pg.218]    [Pg.4]    [Pg.176]    [Pg.1515]    [Pg.551]    [Pg.680]    [Pg.65]    [Pg.63]    [Pg.68]    [Pg.262]    [Pg.178]    [Pg.344]    [Pg.310]    [Pg.552]    [Pg.40]    [Pg.226]    [Pg.227]    [Pg.116]    [Pg.75]    [Pg.203]    [Pg.870]    [Pg.121]    [Pg.246]    [Pg.1628]    [Pg.16]   
See also in sourсe #XX -- [ Pg.475 , Pg.476 ]




SEARCH



Catalytic catalyst

© 2024 chempedia.info