Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic 1-hexene

The second type of solution polymerization concept uses mixtures of supercritical ethylene and molten PE as the medium for ethylene polymerization. Some reactors previously used for free-radical ethylene polymerization in supercritical ethylene at high pressure (see Olefin POLYMERS,LOW DENSITY polyethylene) were converted for the catalytic synthesis of LLDPE. Both stirred and tubular autoclaves operating at 30—200 MPa (4,500—30,000 psig) and 170—350°C can also be used for this purpose. Residence times in these reactors are short, from 1 to 5 minutes. Three types of catalysts are used in these processes. The first type includes pseudo-homogeneous Ziegler catalysts. In this case, all catalyst components are introduced into a reactor as hquids or solutions but form soHd catalysts when combined in the reactor. Examples of such catalysts include titanium tetrachloride as well as its mixtures with vanadium oxytrichloride and a trialkyl aluminum compound (53,54). The second type of catalysts are soHd Ziegler catalysts (55). Both of these catalysts produce compositionaHy nonuniform LLDPE resins. Exxon Chemical Company uses a third type of catalysts, metallocene catalysts, in a similar solution process to produce uniformly branched ethylene copolymers with 1-butene and 1-hexene called Exact resins (56). [Pg.400]

Other Higher Oleiins. Linear a-olefins, such as 1-hexene and 1-octene, are produced by catalytic oligomerization of ethylene with triethyl aluminum (6) or with nickel-based catalysts (7—9) (see Olefins, higher). Olefins with branched alkyl groups are usually produced by catalytic dehydration of corresponding alcohols. For example, 3-methyl-1-butene is produced from isoamyl alcohol using base-treated alumina (15). [Pg.425]

What two stereoisomeric alkanes are formed in the catalytic ] hydrogenation of ( )-3-methyl-2-hexene What are the relative amounts of each J... [Pg.298]

The product i n this case is a cis-disubstituted alkene, so the fi rst question is, " What is an immediate precursor of a cis-disubstituted alkene " We know that an alkene can be prepared from an alkyne by reduction and that the right choice of experimental conditions will allow us to prepare either a trans-disubstituted alkene (using lithium in liquid ammonia) ora cis-disubstituted alkene (using catalytic hydrogenation over the Lindlar catalyst). Thus, reduction of 2-hexyne by catalytic hydrogenation using the Lindlar catalyst should yield cis-2-hexene. [Pg.275]

The synthesis of the trisubstituted cyclohexane sector 160 commences with the preparation of optically active (/ )-2-cyclohexen-l-ol (199) (see Scheme 49). To accomplish this objective, the decision was made to utilize the powerful catalytic asymmetric reduction process developed by Corey and his colleagues at Harvard.83 Treatment of 2-bromocyclohexenone (196) with BH3 SMe2 in the presence of 5 mol % of oxazaborolidine 197 provides enantiomeri-cally enriched allylic alcohol 198 (99% yield, 96% ee). Reductive cleavage of the C-Br bond in 198 with lithium metal in terf-butyl alcohol and THF then provides optically active (/ )-2-cyclo-hexen-l-ol (199). When the latter substance is treated with wCPBA, a hydroxyl-directed Henbest epoxidation84 takes place to give an epoxy alcohol which can subsequently be protected in the form of a benzyl ether (see 175) under standard conditions. [Pg.616]

Ethyl l-cyano-2-methylcyclohexanecarboxylate has been prepared by catalytically hydrogenating the Diels-Alder adduct from butadiene and ethyl 2-cyano-2-butenoate3 and by the procedure described in this preparation.4 8 This procedure illustrates a general method for the preparation of alicyclic compounds by the cyclization of <5-ethylenic carbon radicals l.6 Whereas the primary 5-hexen-l-yl radical 1... [Pg.61]

The catalytic activitira of synfliesized catalysts are given in Table 1. The TS-1 catalyst exhibited the highest epoxide yield and the best catalytic performance for the epoxidation of 1-hexene. The convasion of cyclohexene, however, is the lowest over TS-1. In case of TS-1/MCM-41-A and TS-1/MCM-41-B, the selectivity to epoxide is much hi er than that of Ti-MCM-41. Moreover, the conversion of 1-hexene as well as cyclohexene is found larger on the TS-l/MCM-41-Aand TS-1/MCM-41-B than on other catalysts. While the epoxide yield from 1-hexene is nearly equivalent to that of TS-1, the yield from cyclohexene is much larger than those of the otiier two catalysts. Th e results of olefins epoxidation demonstrate that the TS-l/MCM-41-Aand TS-1/MCM-41-B possess the surface properties of TS-1 and mesoporosity of a typical mesoporous material, which were evidently brou in by the DGC process. [Pg.792]

Titanium containing hexagonal mesoporous materials were synthesized by the modified hydrothermal synthesis method. The synthesized Ti-MCM-41 has hi y ordered hexa rud structure. Ti-MCM-41 was transformed into TS-l/MCM-41 by using the dry gel conversion process. For the synthesis of Ti-MCM-41 with TS-1(TS-1/MCM-41) structure TPAOH was used as the template. The synthesized TS-l/MCM-41 has hexagonal mesopores when the DGC process was carried out for less than 3 6 h. The catalytic activity of synthesized TS-l/MCM-41 catalysts was measured by the epoxidation of 1-hexene and cyclohexene. For the comparison of the catalytic activity, TS-1 and Ti-MCM-41 samples were also applied to the epoxidation reaction under the same reaction conditions. Both the conversion of olefins and selectivity to epoxide over TS-l/MCM-41 are found hi er flian those of other catalysts. [Pg.792]

A tandem cyclisation/cross-coupling reaction between 6-halo-1-hexene 82 and Grignard reagents 83 is successfully catalysed by a NHC-Co catalytic system (Scheme 5.23) [23]. [Pg.143]

The used Pd/ACF catalyst shows a higher selectivity than the fresh Lindlar catalyst, for example, 94 1% versus 89 + 2%, respectively, at 90% conversion. The higher yield of 1-hexene is 87 + 2% with the used catalyst versus 82 + 3% of the Lindlar in a 1.3-fold shorter reaction time. Higher catalyst activity and selectivity is attributed to Pd size and monodispersity. Alkynes hydrogenation is structure-sensitive. The highest catalytic activity and alkene selectivity are observed with Pd dispersions <20% [26]. This indicates the importance of the Pd size control during the catalyst preparation. This can be achieved via the modified ME technique. [Pg.297]

Hydrogenations involving consecutive reactions are common in the organic process industry and even in the hydrogenation of fats. In the fine chemicals industry we have examples of acetylenic (triple) bonds to be selectively converted to olefinic (double) bonds. Lange et al. (1998) have shown, for the comversion of the model substance 2-hexyne into cis-2-hexene, how catalytically active microporous thin-film membranes can accomplish 100% selectivity. This unusual selectivity is attributed to avoidance of backmixing. [Pg.171]

Another example of a catalytic isomerization of 1,5-ene-ynes as 6/4-144 to afford bicyclo[3.1.0]hexenes as 6/4-145 was described by Toste and coworkers (Scheme 6/4.37) [318]. In this reaction, Pd or Pt salts gave only <5 % yield however, with Au salts the products could be obtained with excellent yield. [Pg.481]

The system (23)/SnCl2, an active intermediate in the catalytic hydroformylation of 1-hexene, has been investigated by 31P NMR spectroscopy and two species are observed at low temperature, in equilibrium with the starting Pt complex (23). One is complex (27), and the other is a species which does not show Sn-P coupling and which has been tentatively attributed to a complex having chloride ions bridging the Pt and Sn metal centers. Formation of the complex (27) does not occur when EtOH is added to the CD2C12 or acetone solutions.91... [Pg.151]

Mannig and Noth reported the first example of rhodium-catalyzed hydroboration to C=C bonds in 1985.4 Catecholborane reacts at room temperature with 5-hexene-2-one at the carbonyl double bond when the reaction was run in the presence of 5mol.% Wilkinson s catalyst [Rh(PPh3)3Cl], addition of the B—H bond across the C=C double bond was observed affording the anti-Markovnikoff ketone as the major product (Scheme 2). Other rhodium complexes showed good catalytic properties ([Rh(COD)Cl2]2, [ Rh(PPh3)2(C O )C 1], where... [Pg.266]

Production of chemicals became increasingly important. The recovery of oxygenates from the Fischer-Tropsch aqueous product was expanded to include niche chemicals, such as 1-propanol.45 Ethylene and propylene extraction was increased and even supplemented by the addition of a high-temperature catalytic cracker.46 Linear a-olefin extraction units for the recovery of 1-pentene, 1-hexene, and 1-octene were added to the refinery,45-47 and a new facility for the extraction of 1-heptene and its... [Pg.349]


See other pages where Catalytic 1-hexene is mentioned: [Pg.155]    [Pg.397]    [Pg.48]    [Pg.246]    [Pg.250]    [Pg.631]    [Pg.884]    [Pg.991]    [Pg.161]    [Pg.345]    [Pg.24]    [Pg.1004]    [Pg.96]    [Pg.305]    [Pg.49]    [Pg.471]    [Pg.220]    [Pg.430]    [Pg.48]    [Pg.213]    [Pg.256]    [Pg.145]    [Pg.43]    [Pg.285]    [Pg.128]    [Pg.154]    [Pg.155]    [Pg.162]    [Pg.164]    [Pg.165]    [Pg.178]    [Pg.363]    [Pg.84]    [Pg.56]    [Pg.59]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



1-Hexene catalytic oxidation

1-Hexene, catalytic hydrogenation

© 2024 chempedia.info