Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic cycloadditions nitrile oxides

Kanemasa and coworkers have has also developed the effective use of MS 4A for the rate-controlled slow generation of nitrile oxide 1,3-dipoles from hydroximoyl chlorides in alcohol media. Less than 3 equiv of MS 4A was sufficient enough for the quantitative generation of nitrile oxides in a few hours. This MS 4A-mediated generation method of nitrile oxide can be effectively applied to the catalytic enantioselective nitrile oxide cycloadditions with l-acryloyl-3,5-dimethylpyrazole as dipolarophile in the presence of the nickel(II) aqua complex (10mol%) of R, 7 -DBFOX/Ph ligand [36]. As shown in Table 7.18, the highest yield of cycloadduct was 94% and the maximized enantioselectivity was up to 97% ee. [Pg.191]

Accordingly, cyclic nitronates can be a useful synthetic equivalent of functionalized nitrile oxides, while reaction examples are quite limited. Thus, 2-isoxazoline N-oxide and 5,6-dihydro-4H-l,2-oxazine N-oxide, as five- and six-membered cyclic nitronates, were generated in-situ by dehydroiodination of 3-iodo-l-nitropropane and 4-iodo-l-nitrobutane with triethylamine and trapped with monosubstituted alkenes to give 5-substituted 3-(2-hydroxyethyl)isoxazolines and 2-phenylperhydro-l,2-oxazino[2,3-fe]isoxazole, respectively (Scheme 7.26) [72b]. Upon treatment with a catalytic amount of trifluoroacetic acid, the perhydro-l,2-oxazino[2,3-fe]isoxazole was quantitatively converted into the corresponding 2-isoxazoline. Since a method for catalyzed enantioselective nitrone cycloadditions was established and cyclic nitronates should behave like cyclic nitrones in reactivity, there would be a good chance to attain catalyzed enantioselective formation of 2-isoxazolines via nitronate cycloadditions. [Pg.272]

It has recently been found that Et2Zn promotes the 1,3-dipolar cycloaddition of nitrile oxides to allyl alcohol in the presence of catalytic amounts of diisopropyl tartrate (DIPT). By this method, 2-isoxazlines are obtained in good yields and up to 96% ee (Eq. 8.73).124a A positive nonlinear effect (amplification of ee of the product) has been observed in this reaction. There is an excellent review on positive and negative nonlinear effects in asymmetric induction.124b... [Pg.267]

There are very interesting experimental data demanding theoretical interpretations both dimerization and cycloaddition with dipolarophiles of some aromatic nitrile oxides RCNO (R = Ph, 2-CIC6H4, 2,6-Cl2C6H3) can be inhibited by a catalytic amount of (4-BrC6H4)3N+ SbCl6- (109). [Pg.14]

Among heteroaromatic compounds able to react with nitrile oxides as dipo-larophiles, furan, probably, is the best known. Recently, a novel nitrile oxide was generated from a sulfoximine and converted in situ to a cycloadduct with furan (Scheme 1.25) (287). The starting racemic N-methyl-S-nitromethyl-S-phenylsul-foximine 124 was prepared in 87% yield via nitration of N,S-dimethyl-S-phenyl-sulfoximine. Reaction of 124 with p-chlorophenyl isocyanate and a catalytic quantity of triethylamine, in the presence of furan, afforded dihydrofuroisoxazole 125, the product of nitrile oxide cycloaddition, in 42% yield (65 35 diastereomer ratio). The reaction of 125 with phenyllithium and methyllithium afforded compounds 126, which are products formed by replacement of the sulfoximine group by Ph and Me, respectively. [Pg.44]

New isoxazoline derivatives of a-tocopherol, the main component of vitamin E, have been synthesized in a facile, two-step sequence consisting of nitration followed by 1,3-dipolar cycloaddition. 5-Nitromethyl-a-tocopheryl acetate, obtained from a-tocopheryl acetate by direct nitration in one step, act as the nitrile oxide precursor in the reaction with various alkenes. The facile conversion proceeds in the presence of equimolar amounts of PhNCO and catalytic amounts of triethylamine to give isoxazolines, 446 (489). [Pg.99]

Using a stoichiometric amount of (i ,i )-DIPT as the chiral auxiliary, optically active 2-isoxazolines can be obtained via asymmetric 1,3-dipolar addition of achiral allylic alcohols with nitrile oxides or nitrones bearing an electron-withdrawing group (Scheme 5-53).86a Furthermore, the catalytic 1,3-dipolar cycloaddition of nitrile oxide has been achieved by adding a small amount of 1,4-dioxane (Scheme 5-53, Eq. 3).86b The presence of ethereal compounds such as 1,4-dioxane is crucial for the reproducibly higher stereoselectivity. [Pg.310]

The most widely used, and often most convenient reagents for such one-pot reactions are sodium hypochlorite (45) or hypobromite (16). These reactions are performed in the presence of an organic base (generally triethylamine) that normally enhances the yield of cycloaddition products (45). This method was employed for many intermolecular reactions (71) and also seems especially suited for intramolecular ones (72-77) as well as for the solid-phase synthesis (78) of 2-isoxazolines. Hypohalite can also be replaced by sodium broruite in combination with a catalytic amount of tri-u-butyltin chloride (79). In a related method, O-tributylstannyl oximes were treated with tert-butyl hypochlorite to produce nitrile oxides that were trapped with aUcenes or alkynes to afford the corresponding isoxazolines or isoxazoles in moderate to good yield (80). [Pg.368]

Recently, the intramolecular nitrile oxide-alkene cycloaddition sequence was used to prepare spiro- w(isoxazolines), which are considered useful as chiral ligands for asymmetric synthesis (321). Reaction of the dibutenyl-dioxime (164) (derived from the diester 163) with sodium hypochlorite afforded a mixture of diastereomeric isoxazolines 165-167 in 74% combined yield (Scheme 6.80) (321). It was discovered that a catalytic amount of the Cu(II) complex 165-Cu(acac)2, where acac = acetylacetonate, significantly accelerated the reaction of diisopropylzinc... [Pg.437]

Many groups have tackled the development of catalytic asymmetric versions of nitrile oxide cycloaddition reactions using chiral Lewis acid catalysts. However, Ukaji is the first and the only chemist who has succeeded in the achievement of such processes involving nitrile oxide cycloaddition reactions. He studied reactions... [Pg.793]

The amino acid derived chiral oxazolidinone 188 is a very commonly used auxiliary in Diels-Alder and aldol reactions. However, its use in diastereoselective 1,3-dipolar cycloadditions is less widespread. It has, however, been used with nitrile oxides, nitrones, and azomethine ylides. In reactions of 188 (R = Bn, R =Me, R = Me) with nitrile oxides, up to 92% de have been obtained when the reaction was performed in the presence of 1 equiv of MgBr2 (303). In the absence of a metal salt, much lower selectivities were obtained. The same observation was made for reactions of 188 (R = Bn, R = H, R = Me) with cyclic nitrones in an early study by Murahashi et al. (277). In the presence of Znl2, endo/exo selectivity of 89 11 and up to 92% de was observed, whereas in the absence of additives, low selectivities resulted. In more recent studies, it has been shown for 188 (R =/-Pr, R = H, R =Me) that, in the presence of catalytic amounts of Mgl2-phenanthroline (10%) (16) or Yb(OTf)3(20%) (304), the reaction with acyclic nitrones proceeded with high yields and stereoselectivity. Once again, the presence of the metal salt was crucial for the reaction no reaction was observed in their absence. Various derivatives of 188 were used in reactions with an unsubstituted azomethine ylide (305). This reaction proceeded in the absence of metal salts with up to 60% de. The presence of metal salts led to decomposition of the azomethine ylide. [Pg.857]

Ring fused products can be elaborated from isoxazolines (80S757). Several nitrocyclo-alkenes (516) were prepared and reacted with phenyl isocyanate to generate the intermediate nitrile oxides which underwent internal cycloaddition to afford the tricyclic isoxazolines (517). Cleavage of the N—O bond by hydrogenation in the presence of a catalytic amount of Raney nickel and subsequent hydrolysis afforded the /3-ketol (518 Scheme 113). [Pg.460]

Nitrile oxides react with the methyl enol ethers of (Rs)-l -fluoro-alkyl-2-(p-tolylsulfinyl)ethanones to produce (45,5/f,/fs)-4,5-dihydroisoxazoles with high regio-and diastereo-selectivity.87 In the 1,3-dipolar cycloaddition of benzonitrile oxide with adamantane-2-thiones and 2-methyleneadamantanes, the favoured approach is syn, as predicted by the Cieplak s transition-state hyperconjugation model.88 The 1,3-dipolar cycloaddition reaction of acetonitrile oxide with bicyclo[2.2.l]hepta-2,5-diene yields two 1 1 adducts and four of six possible 2 1 adducts.89 Moderate catalytic efficiency, ligand acceleration effect, and concentration effect have been observed in the magnesium ion-mediated 1,3-dipolar cycloadditions of stable mesitonitrile oxide to allylic alcohols.90 The cycloaddition reactions of acryloyl derivatives of the Rebek imide benzoxazole with nitrile oxides are very stereoselective but show reaction rates and regioselectivities comparable to simple achiral models.91. [Pg.441]

Cycloadditions of in situ generated nitrile oxides 28 with alkynols 27 provided isoxazolylalcohols 29 directly. Their catalytic hydrogenation under mild conditions, followed by acidic hydrolysis, afforded 3(2//)-furanones 30, through p-aminoenone cyclization <0315215>. [Pg.285]


See other pages where Catalytic cycloadditions nitrile oxides is mentioned: [Pg.17]    [Pg.6]    [Pg.430]    [Pg.787]    [Pg.354]    [Pg.634]    [Pg.441]    [Pg.571]    [Pg.171]    [Pg.434]    [Pg.439]    [Pg.445]    [Pg.214]    [Pg.53]   
See also in sourсe #XX -- [ Pg.882 , Pg.883 ]




SEARCH



Catalytic cycloadditions

Cycloaddition oxide

Cycloadditions oxidative

Nitrile oxide cycloaddition

Nitrile oxides

Nitrile oxides cycloadditions

Nitriles cycloaddition

Nitriles cycloadditions

Nitriles nitrile oxides

Oxidative cycloaddition

Oxidative nitriles

© 2024 chempedia.info