Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts transformation, catalyst deactivation

From Fig.2 (a), A solid phase transformation fiom hematite, Fc203 to magnetite, Fe304, is observed, indicating that the active sites of the catalj are related to Fc304. Suzuki et. al also found that Fe304 plays an important role in the formation of active centers by a redox mechanism [6]. It is also observed that the hematite itself relates to the formation of benzene at the initial periods, but no obvious iron carbide peaks are found on the tested Li-Fe/CNF, formation of which is considered as one of the itsisons for catalyst deactivation [3,6]. [Pg.744]

Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 24 111-114 Attenuation, 77 132-133 Attenuation length (AL), 24 87-89 Attrition, catalyst deactivation mechanism, 5 256t... [Pg.78]

If we examine the formation of hydroxyacetophenones more closely, we can see (Fig. 4a) that on HY, at least part of ortho-hydroxyacetophenone could be formed directly from phenylacetate (i.e, intramolecularly) whereas the para-isomer is clearly a secondary product. On HZSM5 both compounds are secondary products (Fig. 4b). Moreover, one can see that the ortho-/para-hydroxyace-tophenone molar ratio changes with conversion especially over HZSM5 where it decreases from 6 to 1 as conversion decreases. Two explanations can be considered i) a consecutive transformation of para-hydroxyacetophenone which would not occur in the case of the ortho-isomer ii) a change in the ortho-/para-selectivity of the zeolite in the course of deactivation. The points at high conversion being obtained on the fresh catalyst, a preferential deactivation of the sites located outside of the particles will decrease the ortho-/para-hydroxyacetophenone molar ratio if one supposes that these sites which are easily accessible favour the formation of the ortho-... [Pg.518]

The phase transformations in the catalyst play an important role in determining the activity, attrition resistance, and deactivation of this catalyst. Activation of this precipitated catalyst transforms single crystals of hematite to smaller crystallites of carbide. While the transformation from hematite to magnetite is extremely rapid, the magnetite to carbide transition is much slower under the conditions of temperature and pressure employed in this study. As carbon deposits on the carbide particles, it serves to further prise the carbide particles apart. In a commercial slurry phase reactor the carbide particles break away leading to catalyst attrition. The implication of this work for the attrition resistance of iron FT catalysts is explored in detail elsewhere.18... [Pg.556]

Figure 2.5 Relative occupancy (%) of the intracrystalline volume of a H-BEA zeolite during the transformation of a 2 1 molar anisole - acetic anhydride mixture in a batch reactor, assuming no adsorption of acetic acid and full occupancy of the micropores. Anisole ( ), acetic anhydride (o) and 4-methoxyacetophenone (x). Reprinted from Journal of Catalysis, Vol. 187, Derouane et al., Zeolite catalysts as solid solvents in Fine Chemicals synthesis 1. Catalyst deactivation in the Friedel-Crafts acetylation of anisole, pp. 209-218, copyright (1999), with permission from Elsevier... Figure 2.5 Relative occupancy (%) of the intracrystalline volume of a H-BEA zeolite during the transformation of a 2 1 molar anisole - acetic anhydride mixture in a batch reactor, assuming no adsorption of acetic acid and full occupancy of the micropores. Anisole ( ), acetic anhydride (o) and 4-methoxyacetophenone (x). Reprinted from Journal of Catalysis, Vol. 187, Derouane et al., Zeolite catalysts as solid solvents in Fine Chemicals synthesis 1. Catalyst deactivation in the Friedel-Crafts acetylation of anisole, pp. 209-218, copyright (1999), with permission from Elsevier...
Advantage can be drawn from the positive effect of phenol on PA transformation into p-HAP to improve the yield and selectivity of p-HAP production.[82 84] Thus, with a HBEA zeolite the yield and selectivity for p-HAP passes from ca. 5 and 28 % respectively with cumene solvent to 24 and 60% with phenol as a solvent .[84] Again sulfolane was shown to have a very positive effect on the selectivity for p-HAP and limits the catalyst deactivation. To explain these observations as well as the effect of P and PA concentrations on the reaction rates, it was proposed that sulfolane plays two independent roles in phenol acylation solvation of acylium ion intermediates and competition with P and PA for adsorption on the acid sites.1831... [Pg.89]

The results show that the specificities of catalyst deactivation and it s kinetic description are in closed connection with reaction kinetics of main process and they form a common kinetic model. The kinetic nature of promotor action in platinum catalysts side by side with other physicochemical research follows from this studies as well. It is concern the increase of slow step rate, the decrease of side processes (including coke formation) rate and the acceleration of coke transformation into methane owing to the increase of hydrogen contents in coke. The obtained data can be united by common kinetic model.lt is desirable to solve some problems in describing the catalyst deactivation such as the consideration of coke distribution between surfaces of metal, promoter and the carrier in the course of reactions, diffusion effects etc,. [Pg.548]

In this paper factors controlling the catalytic activity in the hydrodesulfurization reaction (HDS) are discussed. The SiOa-supported phosphormolybdenum heteropolyacid (HPMo) is used as a model catalyst. Two types of the catalyst deactivation have been shown. The reversible deactivation effect is related with changes in the molybdenum valence, its 0- and 0,S-surrounding and adsorbtion of the S-containing reaction products. The HDS activity is irreversibly changed when the transformation of the catalyst phase composition is carried out ... [Pg.620]

The objective of the symposium is to promote a scientific approach of the phenomenon of catalyst deactivation which will contribute to the development of catalysts less subject to structural transformations and more resistant to poisons and coke formation. [Pg.638]

FTIR model experiments were performed to reveal the nature of catalyst deactivation in C02. The spectrum taken at 15 bar in a C02/H2 mixture is shown in Fig. 1. The bands at 2060 and 1870 cm 1 indicate considerable coverage of Pt by linearly and bridge-bonded CO [12], formed by the reduction of C02 on Pt (reverse water gas shift reaction). The three characteristic bands at 1660, 1440 and 1235 cm 1 are attributed to C02 adsorption on A1203, likely as carbonate species [13, 14], It is well known [15] that CO is a strong poison for the hydrogenation of carbonyl compounds on Pt, but can improve the selectivity of the acetylene — olefin type transformations. Based on the above FTIR experiments it cannot be excluded that there are other strongly adsorbed species on Pt formed in small amounts. It is possible that the reduction of C02 provides also -COOH and triply bonded COH, as proposed earlier [16]. [Pg.141]


See other pages where Catalysts transformation, catalyst deactivation is mentioned: [Pg.68]    [Pg.303]    [Pg.216]    [Pg.169]    [Pg.169]    [Pg.55]    [Pg.502]    [Pg.42]    [Pg.264]    [Pg.43]    [Pg.282]    [Pg.47]    [Pg.86]    [Pg.564]    [Pg.365]    [Pg.77]    [Pg.79]    [Pg.421]    [Pg.401]    [Pg.52]    [Pg.122]    [Pg.72]    [Pg.294]    [Pg.295]    [Pg.202]    [Pg.34]    [Pg.118]    [Pg.60]    [Pg.19]    [Pg.163]    [Pg.465]    [Pg.567]    [Pg.143]    [Pg.375]    [Pg.74]    [Pg.279]    [Pg.1517]    [Pg.334]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Catalyst deactivating

Catalyst deactivation

Catalyst deactivation solid-state transformation

Catalysts deactivated

© 2024 chempedia.info