Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst preparation calcination

CO conversions over Au/Ce02 catalyst were measured in the dry and wet condition as shown in Fig. 1. Similar to other supported gold catalysts, Au/Ce02 catalyst showed higher CO conversions in the presence of water vapor than in the absence of it at the same temperature. Catalytic activities for CO oxidation over Au/Ce02 catalysts prepared at different calcinations temperature were compared in the dry and wet condition as shown in Fig. 2. Au/Ce02 catalyst calcined at 473 K showed the highest initial CO conversion in the absence of water vapor. However, the CO conversion decreased steadily and reached a steady-state value over this catalyst. [Pg.322]

XPS spectra were obtained for the catalysts in the calcined, sulfided, and sometimes in the reduced state, as described before. Table III gives the binding energies and relative surface concentrations for the M0/AI2O3 and C0-M0/AI2O3 catalysts, with and without arsenic. Data for the used catalysts, which are not listed in the table, are similar to those for the catalysts prepared in the laboratory. [Pg.5]

Copper ore containing a deposit of aurlchalclte was obtained from Wards Natural Science Establishment. The mineral aurlchalclte crystallites were gently scraped from the ore and rinsed In ethanol prior to use. The synthetic precursor was prepared by copreclpltatlon from a mixture of IM Cu and IM Zn nitrate solutions, such that a Cu/Zn mole ratio of 30/70 was prepared, by dropwlse addition of IM Na2C03 at 90 C until the pH Increased from approximately 3 to 7. Calcination and reduction of the mineral were performed as In standard catalyst preparation procedures, which have been described In detail earlier (jL). ... [Pg.352]

The aurlchalclte mineral was calcined In air at 350°C for 4 hours according to the standard catalyst preparation procedure used earlier for the precipitated precursor (1 ). XRD showed that aurlchalclte and... [Pg.352]

Combined analyses by XRD and TEM showed that the aurichalcite mineral was sufficiently similar to the synthetic aurichalcite to be used as a model compound, to study the microstructural changes occurring during the catalyst preparation procedures. Calcination of the mineral and synthetic samples led to highly preferred orientations of ZnO. ZnO electron diffraction patterns with [lOlO] and [3031] zone... [Pg.356]

Na-ZSM-5(a molar SiOz/AlaOa ratio=23.8) provided by Tosoh Corp. was used. ln(4wt%)/H-ZSM-5 and lr(1wt%)/H-ZSM-5 catalysts were prepared by the ion exchange method using NH4-ZSM-5 derived from the Na-ZSM-5 with aqueous solutions of ln(NOs)3 at 368 K for 8 h and lrCI(NH3)sCl2 at room temperature for 24 h, respectively. Addition of precious metals, 1wt% platinum and iridium to ln/H-ZSM-5 was carried out by impregnating the ln/NH4-ZSM-5 in aqueous solutions of Pt(NH3)4Cl2 and lrCI(NH3)5Cl2, respectively. The catalysts were calcined at 813 K for 3 h. [Pg.672]

The HCl-treated AI2O3 was prepared at room temperature by adding 50 ml of aqueous HCl to AI2O3 such that the Cl" concentration was the same as in the catalyst preparation. After stirring the mixture vigorously for 1 h. Mg citrate was added, the mixture was stirred for another h, and then the solid was filtered, washed, dried, calcined, and activated in the same way as in the preparation of A11/AI2O3. [Pg.702]

The solid base catalysts were prepared by dissolving Cs(N03)2 (Aldrich, 99%) in the minimum amount of distilled water before addition to the silica support by spray impregnation a method used to give a high dispersion of the metal salt on the support. The amount of each precursor added was calculated in order to give a 10% loading of metal on each catalyst. The catalyst was then dried in an oven overnight at 373 K. Prior to the reaction the catalyst was calcined in situ in a flow of N2 (BOC, 02 free N2) at 10 cm3 min"1 for 2 hours at 723 K. [Pg.364]

Chromium zeolites are recognised to possess, at least at the laboratory scale, notable catalytic properties like in ethylene polymerization, oxidation of hydrocarbons, cracking of cumene, disproportionation of n-heptane, and thermolysis of H20 [ 1 ]. Several factors may have an effect on the catalytic activity of the chromium catalysts, such as the oxidation state, the structure (amorphous or crystalline, mono/di-chromate or polychromates, oxides, etc.) and the interaction of the chromium species with the support which depends essentially on the catalysts preparation method. They are ruled principally by several parameters such as the metal loading, the support characteristics, and the nature of the post-treatment (calcination, reduction, etc.). The nature of metal precursor is a parameter which can affect the predominance of chromium species in zeolite. In the case of solid-state exchange, the exchange process initially takes place at the solid- solid interface between the precursor salt and zeolite grains, and the success of the exchange depends on the type of interactions developed [2]. The aim of this work is to study the effect of the chromium precursor on the physicochemical properties of chromium loaded ZSM-5 catalysts and their catalytic performance in ethylene ammoxidation to acetonitrile. [Pg.345]

The preparation of catalysts usually involves the impregnation of a support with a solution of active metal salts. The impregnated support is then dried, calcined to decompose the metal salt and then reduced (activated) to produce the catalyst in its active form. Microwaves have been employed at all stages of catalyst preparation. Beneficial effects of microwave heating, compared with conventional methods, have been observed especially in the drying, calcination, and activation steps. [Pg.347]

One way in which cobalt dispersion can be increased is the addition of an organic compound to the cobalt nitrate prior to calcination. Previous work in this area is summarized in Table 1.1. The data are complex, but there are a number of factors that affect the nature of the catalyst prepared. One of these is the cobalt loading. Preparation of catalysts containing low levels of cobalt tends to lead to high concentrations of cobalt-support compounds. For example, Mochizuki et al. [37] used x-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) to identify cobalt silicate-like species in their 5% Co/Si02 catalysts modified with nitrilotriacetic acid (NTA). The nature of the support also has... [Pg.2]

Outside of catalyst preparation, reaction of sucrose with metal nitrates has been used to prepare nanocomposite mixed oxide materials. Wu et al. [46] reported the synthesis of Mg0-Al203 and Y203-Zr02 mixed oxides by reaction of nitrate precursors with sucrose. The resulting powders had smaller particles than those prepared without sucrose. Das [47] used a similar method in the presence of poly vinylalcohol to produce nanocrystalline lead zirconium titanate and metal ferrierites (MFe204, M = Co, Ni, or Zn). The materials prepared using sucrose had smaller crystallites than those made without. Both authors observed an exothermic decomposition of the precursors during calcination. [Pg.6]


See other pages where Catalyst preparation calcination is mentioned: [Pg.46]    [Pg.46]    [Pg.405]    [Pg.742]    [Pg.744]    [Pg.15]    [Pg.116]    [Pg.53]    [Pg.56]    [Pg.65]    [Pg.225]    [Pg.306]    [Pg.323]    [Pg.337]    [Pg.357]    [Pg.198]    [Pg.3]    [Pg.145]    [Pg.356]    [Pg.556]    [Pg.94]    [Pg.259]    [Pg.498]    [Pg.626]    [Pg.175]    [Pg.293]    [Pg.391]    [Pg.360]    [Pg.573]    [Pg.387]    [Pg.402]    [Pg.475]    [Pg.11]    [Pg.85]    [Pg.129]    [Pg.2]    [Pg.4]    [Pg.10]    [Pg.34]    [Pg.34]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Calcinators

Calcine

Calcined

Calciner

Calciners

Calcining

Catalysts preparation

© 2024 chempedia.info