Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst layer hydrogen oxidation

The transient response of DMFC is inherently slower and consequently the performance is worse than that of the hydrogen fuel cell, since the electrochemical oxidation kinetics of methanol are inherently slower due to intermediates formed during methanol oxidation [3]. Since the methanol solution should penetrate a diffusion layer toward the anode catalyst layer for oxidation, it is inevitable for the DMFC to experience the hi mass transport resistance. The carbon dioxide produced as the result of the oxidation reaction of methanol could also partly block the narrow flow path to be more difScult for the methanol to diflhise toward the catalyst. All these resistances and limitations can alter the cell characteristics and the power output when the cell is operated under variable load conditions. Especially when the DMFC stack is considered, the fluid dynamics inside the fuel cell stack is more complicated and so the transient stack performance could be more dependent of the variable load conditions. [Pg.593]

Tungsten carbide, mentioned in Section 12.5, is a good catalyst for hydrogen oxidation, but in the presence of oxygen, oxide layers are formed, blocking the surface, and therefore it cannot be used in mixed-reactant-supply fuel cells. [Pg.310]

A fuel cell consists of an ion-conducting membrane (electrolyte) and two porous catalyst layers (electrodes) in contact with the membrane on either side. The hydrogen oxidation reaction at the anode of the fuel cell yields electrons, which are transported through an external circuit to reach the cathode. At the cathode, electrons are consumed in the oxygen reduction reaction. The circuit is completed by permeation of ions through the membrane. [Pg.77]

Electrochemical reactions take place at the catalyst layers of the fuel cell. At the anode and cathode, hydrogen is oxidized (eq 1) and oxygen is reduced (eq 2), respectively. These layers are often the thinnest in the fuel-cell sandwich but are perhaps the most complex because this is where electrochemical reactions take place and where all of the different types of phases exist. Thus, the membrane and diffusion media models must be used in the catalyst layer along with additional expressions related to the electrochemical kinetics on the supported electrocatalyst particles. [Pg.461]

These kinetic expressions represent the hydrogen oxidation reaction (HOR) in the anode catalyst layer and oxygen reduction reaction (ORR) in the cathode catalyst layer, respectively. These are simplified from the general Butler-Volmer kinetics, eq 5. The HOR... [Pg.496]

Polymer electrolyte fuel cell (PEFC) is considered as one of the most promising power sources for futurist s hydrogen economy. As shown in Fig. 1, operation of a Nation-based PEFC is dictated by transport processes and electrochemical reactions at cat-alyst/polymer electrolyte interfaces and transport processes in the polymer electrolyte membrane (PEM), in the catalyst layers consisting of precious metal (Pt or Ru) catalysts on porous carbon support and polymer electrolyte clusters, in gas diffusion layers (GDLs), and in flow channels. Specifically, oxidants, fuel, and reaction products flow in channels of millimeter scale and diffuse in GDL with a structure of micrometer scale. Nation, a sulfonic acid tetrafluorethy-lene copolymer and the most commonly used polymer electrolyte, consists of nanoscale hydrophobic domains and proton conducting hydrophilic domains with a scale of 2-5 nm. The diffusivities of the reactants (02, H2, and methanol) and reaction products (water and C02) in Nation and proton conductivity of Nation strongly depend on the nanostructures and their responses to the presence of water. Polymer electrolyte clusters in the catalyst layers also play a critical... [Pg.307]

Figure 21 provides an example of the use of ESCA to define an oxidation state of a freshly reduced palladium-on-carbon hydrogenation catalyst exposed to the air. The metallic palladium peaks (Fig. 21a) are quite evident, indicating no bulk oxidation occurred. There is a strong peak for carbon, probably due to adsorbed CO2 from the air. The presence of a small amount of PdO is suggested at 337 eV in Fig. 21B. This peak is a shoulder on the palladium 3 5/2 peak and most likely represents a surface layer of oxide on the palladium. This information could not be conveniently obtained by XRD because small palladium (or PdO) crystallites cannot diffract X rays. Furthermore, XRD measures bulk properties and would not see surface oxides even if the crystallite sizes were sufficiently large to be XRD sensitive. We can therefore expect to see more frequent use of ESCA or other surface sensitive techniques to monitor the surface of catalytic materials. Figure 21 provides an example of the use of ESCA to define an oxidation state of a freshly reduced palladium-on-carbon hydrogenation catalyst exposed to the air. The metallic palladium peaks (Fig. 21a) are quite evident, indicating no bulk oxidation occurred. There is a strong peak for carbon, probably due to adsorbed CO2 from the air. The presence of a small amount of PdO is suggested at 337 eV in Fig. 21B. This peak is a shoulder on the palladium 3 5/2 peak and most likely represents a surface layer of oxide on the palladium. This information could not be conveniently obtained by XRD because small palladium (or PdO) crystallites cannot diffract X rays. Furthermore, XRD measures bulk properties and would not see surface oxides even if the crystallite sizes were sufficiently large to be XRD sensitive. We can therefore expect to see more frequent use of ESCA or other surface sensitive techniques to monitor the surface of catalytic materials.
The high theoretical efficiency of a fuel cell is substantially reduced by the finite rate of dynamic processes at various locations in the cell. Substantial efficiency losses at typical operating temperatures occur already in the anodic and cathodic catalyst layers due to the low intrinsic reaction rates of the oxygen reduction and, in the case of the DMFC, of the methanol oxidation reaction. (The catalytic oxidation of hydrogen with platinum catalysts is very fast and thus does not limit PEFC performance.) In addition, at low temperatures, turnover may be limited by noble metal catalyst poisoning due to sulfur... [Pg.362]


See other pages where Catalyst layer hydrogen oxidation is mentioned: [Pg.383]    [Pg.182]    [Pg.129]    [Pg.407]    [Pg.40]    [Pg.448]    [Pg.521]    [Pg.11]    [Pg.166]    [Pg.305]    [Pg.442]    [Pg.129]    [Pg.55]    [Pg.46]    [Pg.2]    [Pg.450]    [Pg.495]    [Pg.513]    [Pg.512]    [Pg.26]    [Pg.302]    [Pg.325]    [Pg.326]    [Pg.2]    [Pg.221]    [Pg.418]    [Pg.115]    [Pg.169]    [Pg.312]    [Pg.266]    [Pg.20]    [Pg.163]    [Pg.313]    [Pg.3439]    [Pg.221]    [Pg.796]    [Pg.245]    [Pg.374]    [Pg.612]    [Pg.614]    [Pg.415]    [Pg.397]    [Pg.2503]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Catalyst layer

Hydrogen oxidation, catalysts

Oxidants layer

Oxide layer

Oxides layered

© 2024 chempedia.info