Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst deactivation poisoning

The selectivity in a system of parallel reactions does not depend much on the catalyst size if effective diffusivities of reactants, intermediates, and products are similar. The same applies to consecutive reactions with the product desired being the final product in the series. In contrast with this, for consecutive reactions in which the intermediate is the desired product, the selectivity much depends on the catalyst size. This was proven by Edvinsson and Cybulski (1994, 1995) for. selective hydrogenations and also by Colen et al. (1988) for the hydrogenation of unsaturated fats. Diffusion limitations can also affect catalyst deactivation. Poisoning by deposition of impurities in the feed is usually slower for larger particles. However, if carbonaceous depositions are formed on the catalyst internal surface, ageing might not depend very much on the catalyst size. [Pg.388]

Both objectives have been met by designing special hydrogenation catalysts The most frequently used one is the Lindlar catalyst, a palladium on calcium carbonate combi nation to which lead acetate and quinoline have been added Lead acetate and quinoline partially deactivate ( poison ) the catalyst making it a poor catalyst for alkene hydro genation while retaining its ability to catalyze the addition of H2 to the triple bond... [Pg.375]

In service, supported catalysts frequentiy undergo loss of activity over a period of time. In many cases, such catalyst deactivation is accompanied by the loss of accessible surface area of the active phase by sintering, by the accumulation of poisons, or by conversion of active sites to inactive species. [Pg.193]

Catalyst lifetimes are long in the absence of misoperation and are limited primarily by losses to fines, which are removed by periodic sieving. Excessive operating temperatures can cause degradation of the support and loss of surface area. Accumulation of refractory dusts and chemical poisons, such as compounds of lead and mercury, can result in catalyst deactivation. Usually, much of such contaminants are removed during sieving. The vanadium in these catalysts may be extracted and recycled when economic conditions permit. [Pg.203]

Deactivation of zeolite catalysts occurs due to coke formation and to poisoning by heavy metals. In general, there are two types of catalyst deactivation that occur in a FCC system, reversible and irreversible. Reversible deactivation occurs due to coke deposition. This is reversed by burning coke in the regenerator. Irreversible deactivation results as a combination of four separate but interrelated mechanisms zeolite dealu-mination, zeolite decomposition, matrix surface collapse, and contamination by metals such as vanadium and sodium. [Pg.72]

The space velocity was varied from 2539 to 9130 scf/hr ft3 catalyst. Carbon monoxide and ethane were at equilibrium conversion at all space velocities however, some carbon dioxide breakthrough was noticed at the higher space velocities. A bed of activated carbon and zinc oxide at 149 °C reduced the sulfur content of the feed gas from about 2 ppm to less than 0.1 ppm in order to avoid catalyst deactivation by sulfur poisoning. Subsequent tests have indicated that the catalyst is equally effective for feed gases containing up to 1 mole % benzene and 0.5 ppm sulfur (5). These are the maximum concentrations of impurities that can be present in methanation section feed gases. [Pg.141]

For the catalyst activity factor (aj), several models have been proposed, depending on the origin of catalyst deactivation, that is, sintering, fouling, or poisoning. The following differential equation can semiempiricaUy represent different kinds of... [Pg.170]

It is concluded that the occupation of the step and kink sites plays a crucial role in the promotion of the Pt catalyst. The cyclic voltammetry results can be used to explain the conversion trends observed in Figure 2. For unpromoted 5%Pt/C the Pt step and kink sites are unoccupied and available for adsorption of reactant and oxidant species. During reaction these sites facilitate premature catalyst deactivation due to poisoning by strongly adsorbed by-products (5) and (or) the formation of a surface oxide layer (6). The 5%Pt,0.5%Bi/C catalyst has a portion of these Pt step and kink sites occupied and the result is a partial reduction in the catalyst deactivation and a consequent increase in alcohol conversion. As the Bi level is increased to lwt.% almost all of the Pt step and kink sites are occupied and the result is a catalyst with high activity. As more Bi is introduced onto the catalyst surface a bulk Bi phase is formed. Since the catalyst activity is maintained it is speculated that the bulk Bi phase is not involved in the catalytic cycle. [Pg.418]

If the activity of the catalyst is slowly modified by chemisorption of materials that are not easily removed, the deactivation process is termed poisoning. It is usually caused by preferential adsorption of small quantities of impurities (poisons) present in the feedstream. Adsorption of extremely small amounts of the poison (a small fraction of a monolayer) is often sufficient to cause very large losses in catalytic activity. The bonds linking the catalyst and poison are often abnormally strong and highly specific. Consequently, the process is often irreversible. If the process is reversible, a change in the temperature or the composition of the gas to which it is exposed may be sufficient to restore catalyst... [Pg.202]

Scheme 11 Catalyst deactivation routes in copolymerizations with polar olefins a P-elimination of a leaving group to afford allylic or dimeric species, b poisoning by N-complexation in the attempted copolymerization of acrylonitrile... Scheme 11 Catalyst deactivation routes in copolymerizations with polar olefins a P-elimination of a leaving group to afford allylic or dimeric species, b poisoning by N-complexation in the attempted copolymerization of acrylonitrile...
Catalyst deactivation refers to the loss of catalytic activity and/or product selectivity over time and is a result of a number of unwanted chemical and physical changes to the catalyst leading to a decrease in number of active sites on the catalyst surface. It is usually an inevitable and slow phenomenon, and occurs in almost all the heterogeneous catalytic systems.111 Three major categories of deactivation mechanisms are known and they are catalyst sintering, poisoning, and coke formation or catalyst fouling. They can occur either individually or in combination, but the net effect is always the removal of active sites from the catalyst surface. [Pg.96]

Stefanov and coworkers—deactivation pathways for industrial Cu/Cr/Zn catalysts. Stefanov and coworkers250 published an XPS study indicating that the Cu-Cr-Zn catalyst deactivates via two pathways in an industrial reactor-sintering and poisoning by chlorine adsorption, which caused a deactivation of the catalyst from... [Pg.192]

An efficient, low temperature oxidation catalyst was developed based on highly disperse metal catalyst on nanostructured Ti02 support. Addition of dopants inhibits metal sintering and prevents catalyst deactivation. The nanostructured catalyst was formulated to tolerate common poisons found in environments such as halogen- and sulfur-containing compounds. The nanocatalyst is capable of oxidizing carbon monoxide and common VOCs to carbon dioxide and water at near ambient temperatures (25-50 °C). [Pg.358]

Catalyst stability with time on stream is an important characteristic. Acidic catalysts can be deactivated by basic poisons such as nitrogen. Carbonaceous species can build up on both metal and acid sites. These are the two prevalent mechanisms for catalyst deactivation. Other ways that a catalyst can be damaged, such as a temperature excursion, may be more likely to occur during the initial start up or during coke burning regenerations. Regeneration is discussed in the next section. [Pg.495]

Alkynes may also be hydrogenated, initially to alkenes, and then further to alkanes. By suitable modification of the catalyst, it has proved possible to stop the reaction at the intermediate alkene. Typically, platinum or palladium catalysts partially deactivated (poisoned) with lead salts are fonnd to be suitable for reduction of alkynes to alkenes. Again, syn addition is observed. [Pg.333]


See other pages where Catalyst deactivation poisoning is mentioned: [Pg.204]    [Pg.400]    [Pg.343]    [Pg.204]    [Pg.400]    [Pg.343]    [Pg.276]    [Pg.348]    [Pg.508]    [Pg.201]    [Pg.509]    [Pg.509]    [Pg.511]    [Pg.2097]    [Pg.89]    [Pg.96]    [Pg.119]    [Pg.122]    [Pg.173]    [Pg.169]    [Pg.68]    [Pg.435]    [Pg.110]    [Pg.384]    [Pg.413]    [Pg.220]    [Pg.197]    [Pg.202]    [Pg.82]    [Pg.457]    [Pg.281]    [Pg.97]    [Pg.150]    [Pg.330]    [Pg.215]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Catalyst deactivating

Catalyst deactivation

Catalyst deactivation irreversible poisoning

Catalyst deactivation reversible poisoning

Catalyst deactivation selective poisoning

Catalyst poison

Catalyst poisoning and deactivation

Catalysts catalyst poisoning

Catalysts deactivated

Catalysts poisoning

Poison , catalysts deactivation

Poisoned catalysts

Poisoning, catalyst deactivation from

Silica poisoning, catalyst deactivation

Sulfur poisoning, catalyst deactivation

Zeolite, catalyst deactivation poisoning

© 2024 chempedia.info