Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst characteristics, immobilized

Planar faults are common in zeolites and related crystalline microporous solids. These can influence the sorptive characteristics in any one of several ways (i) they can have little influence on the overall accessibility or capacity, but alter the pore architecture, accessibility or difiusional constraints (ii) they can reduce the limiting dimensions of pore windows while leaving the tot pore volume unaffected (iii) they can block channels. Pores or pore access can also be blocked by detrital material such as alumina extracted from the framework, coke or sintered metal catalyst particles, immobile organic molecules or non-framework cations in blocking positions. [Pg.251]

Various redox compounds that fulfil catalyst characteristics have been investigated in systems with recycling of NAD by electrocatalytic methods. Quinones, formed either by oxidation of carbon surfaces [143, 145] or adsorbed to the electrode surface [146, 147], phenazines [148, 149], phenoxazine derivatives such as Meldola Blue [182], 9-naphthoyl-Nile Blue [151, 152] and l,2-benzophenoxazine-7-one [153], and also the organic conducting salt N-methyl phenazinium tetracyanoquinodimethanide (TTF TCNQ") [154, 155], ferricinium ions [156, 157] and hexacyanoferrat(IIl) ions [158, 159] can act as catalysts for the electrochemical oxidation of NADH. It is assumed that in corresponding electron-transfer reactions a charge-transfer complex between the immobilized mediator and NADH is formed. The intermediate reduced redox mediator will be reoxidized electrochemically. Most systems mentioned, however, suffer from poor electrode stabilities. [Pg.45]

Reaction Characteristics of Immobilized Ru-BINAP Catalysts in Asymmetric Hydrogenation of Dimethyl itaconate... [Pg.349]

Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards. Fig. 1. P MAS NMR spectrum of (a)Ru-BrNAP/PTA/y-Al203, and (b)Ru-BINAP crt rlex In order to find the characteristics of the immobilized catalyst, asymmetric hydrogenation of the prochiral C=C bond was performed as a model reaction. Firstly, three different homogeneous Ru-BINAP complexes including [RuCl2((R)-BINAP)], [RuCl((R)-BINAP)(p-cymene)]Cl and [RuCl((R)-BINAP)(Benzene)]Cl were immobilized on the PTA-modified alumina. Reaction test of immobilized catalysts showed that [RuCl2((R)-BINAP)] was the most active and selective so all the experiment were done using this catalyst afterwards.
Carbon is inert in nature and has a high surface area, making it highly suitable as a support for catalysts. The surface characteristics and porosity of carbon may be easily tailored for different applications. Acid treatment is often applied to modify its surface chemistry for specific applications. Typically, active metal species are immobilized on carbon for catalytic applications. [Pg.381]

Immobilizing the catalyst on the electrode surface is useful for both synthetic and sensors applications. Monomolecular coatings do not allow redox catalysis, but multilayered coatings do. The catalytic responses are then functions of three main factors in addition to transport of the reactant from the bulk of the solution to the film surface transport of electrons through the film, transport of the reactant in the reverse direction, and catalytic reaction. The interplay of these factors is described with the help of characteristic currents and kinetic zone diagrams. In several systems the mediator plays the role of an electron shuttle and of a catalyst. More interesting are the systems in which the two roles are assigned to two different molecules chosen to fulfill these two different functions, as illustrated by a typical experimental example. [Pg.502]

The more successful strategy for the isolation of RNA- and DNA-based catalysts involves the direct screening of nucleic acids libraries for catalytic activity. This approach is called direct selection [6, 65, 77, 78, 86, 101-107]. In direct selections, nucleic acids that are capable of catalyzing a particular chemical transformation modify themselves with a tag or other characteristic that allows their preferential enrichment over those molecules which are catalytically inactive [108]. The design of ribozyme-selections involving reactions between two small substrates requires that one reactant be covalently attached to every individual member of the starting RNA pool. After the reaction with another substrate which usually carries the selection-tag has occurred, the self-modified RNA is immobilized on a solid support, separated from non-active molecules, and then cleaved off the support. [Pg.111]

Nature also prefers this method by keeping enzymes within cells, on cell walls, or adsorbed ( bound ) on large molecules, which are said to be immobilized. We therefore need to consider carefully the binding of catalysts on supports. The creation of structures and configurations of catalyst, support, and reactants and products to facilitate mass transfer and to provide access of reactants to the catalyst are essential features in designing a reaction system that has appropriate mass transfer characteristics. [Pg.270]

The wide spectrum of external conditions which can influence the conformational state of charged gels (the variation of these conditions can induce collapse or decollapse transition), makes these gels possible materials for data control devices of different types, absorbers, reactors and catalysts with regulated diffusion characteristics, carriers of immobilized enzymes, etc. The networks synthesized at high dilution are also new mechano-chemical systems which show very high sensitivity to external actions. [Pg.128]

Silica-alumina particles coated with a permselective silicalite membrane is almost completely selective in the formation of p-xylene in the disproportionation of toluene.402 Friedel-Crafts alkylations were performed in ionic liquids. The strong polarity and high electrostatic fields of these materials usually bring about enhanced activity.403 404 Easy recycling is an additional benefit. Good characteristics in the alkylation of benzene with dodecene were reported for catalysts immobilized on silica or MCM-41 405... [Pg.265]


See other pages where Catalyst characteristics, immobilized is mentioned: [Pg.91]    [Pg.213]    [Pg.27]    [Pg.57]    [Pg.801]    [Pg.801]    [Pg.271]    [Pg.664]    [Pg.664]    [Pg.216]    [Pg.264]    [Pg.298]    [Pg.349]    [Pg.538]    [Pg.273]    [Pg.5]    [Pg.394]    [Pg.10]    [Pg.1422]    [Pg.203]    [Pg.167]    [Pg.292]    [Pg.182]    [Pg.127]    [Pg.300]    [Pg.338]    [Pg.91]    [Pg.94]    [Pg.98]    [Pg.178]    [Pg.287]    [Pg.38]    [Pg.520]    [Pg.176]    [Pg.54]    [Pg.378]    [Pg.328]    [Pg.111]   


SEARCH



Catalyst characteristics

Catalyst immobilization

Immobilized catalysts

© 2024 chempedia.info