Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis thermall

Controlling Factors in Homogeneous Transistion-Metal Catalysis Thermal stability of A in defined solutions... [Pg.67]

The present study indicates that the extracellular enzyme, pepsin, exhibits striking differences from its mammalian homologue with respect to optimum pH, Ea for catalysis, thermal stability, and substrate affinity. These data are interesting from the viewpoint of biological adaption at low temperatures, but they also provide some substance to our contention that enzymes from fish plant wastes can have sufficiently unique properties to justify their use over conventional sources of enzymes used as food-processing aids. The relatively low Eas for protein hydrolysis by fish pepsins indicate they may be especially useful for protein modifications at low temperatures. Alternatively, the poor thermal stability of the fish pepsins studied indicate that the enzymes can be inactivated by relatively mild blanching temperatures. The reality of this concept will have to await studies where the pepsins are used as food-processing aids. Such studies are currently underway in our laboratory. [Pg.240]

As implied above, there is nothing dramatically special about photocatalysis. It is simply another type of catalysis alongside, as it were, redox catalysis, acid-base catalysis, enzyme catalysis, thermal catalysis and others. Consequently, it is worth reemphasising that any description of photocatalysis must correspond to the general definition of catalysis. This said, it could be argued that the broad label photocatalysis simply describes catalysis of a photochemical reaction. [Pg.305]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

Catalysis is usually accompHshed through the use of tertiary amines such as triethylenediamine. Other catalysts such as 2,4,6-/m(/V,/V-dimethylaminomethyl)phenol are used in the presence of high levels of cmde MDI to promote trimerization of the isocyanate and thus form isocyanurate ring stmctures. These groups are more thermally stable than the urethane stmcture and hence are desirable for improved flammabiUty resistance (236). Some urethane content is desirable for improved physical properties such as abrasion resistance. [Pg.418]

Miscellaneous Reactions. Some hydantoin derivatives can serve as precursors of carbonium—immonium electrophiles (57). 5-Alkoxyhydantoins are useful precursors of dienophiles (17), which undergo Diels-Alder cycloadditions under thermal conditions or in the presence of acid catalysis (58). The pyridine ring of Streptonigrine has been constmcted on the basis of this reaction (59). [Pg.253]

Hydrocarbon resins based on CPD are used heavily in the adhesive and road marking industries derivatives of these resins are used in the production of printing inks. These resins may be produced catalyticaHy using typical carbocationic polymerization techniques, but the large majority of these resins are synthesized under thermal polymerization conditions. The rate constants for the Diels-Alder based dimerization of CPD to DCPD are weU known (49). The abiHty to polymerize without Lewis acid catalysis reduces the amount of aluminous water or other catalyst effluents/emissions that must be addressed from an environmental standpoint. Both thermal and catalyticaHy polymerized DCPD/CPD-based resins contain a high degree of unsaturation. Therefore, many of these resins are hydrogenated for certain appHcations. [Pg.354]

Structure Modification. Several types of stmctural defects or variants can occur which figure in adsorption and catalysis (/) surface defects due to termination of the crystal surface and hydrolysis of surface cations (2) stmctural defects due to imperfect stacking of the secondary units, which may result in blocked channels (J) ionic species, eg, OH , AIO 2, Na", SiO , may be left stranded in the stmcture during synthesis (4) the cation form, acting as the salt of a weak acid, hydrolyzes in aqueous suspension to produce free hydroxide and cations in solution and (5) hydroxyl groups in place of metal cations may be introduced by ammonium ion exchange, followed by thermal deammoniation. [Pg.447]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Metal Catalysis. Aqueous solutions of amine oxides are unstable in the presence of mild steel and thermal decomposition to secondary amines and aldehydes under acidic conditions occurs (24,25). The reaction proceeds by a free-radical mechanism (26). The decomposition is also cataly2ed by V(III) and Cu(I). [Pg.190]

Laser stimulation of a silver surface results in a reflected signal over a million times stronger than that of other metals. Called laser-enhanced Raman spectroscopy, this procedure is useful in catalysis. The large neutron cross section of silver (see Fig. 2), makes this element useful as a thermal neutron flux monitor for reactor surveillance programs (see Nuclearreactors). [Pg.82]

Catalytic Oxidization. A principal technology for control of exhaust gas pollutants is the catalyzed conversion of these substances into innocuous chemical species, such as water and carbon dioxide. This is typically a thermally activated process commonly called catalytic oxidation, and is a proven method for reducing VOC concentrations to the levels mandated by the CAAA (see Catalysis). Catalytic oxidation is also used for treatment of industrial exhausts containing halogenated compounds. [Pg.502]

Chemical reaction sources catalysis, reaction with powerful oxidants, reaction of metals with halocarhons, thermite reaction, thermally unstahle materials, accumulation of unstahle materials, pyrophoric materials, polymerization, decomposition, heat of adsorption, water reactive solids, incompatihle materials. [Pg.59]

The chemical modification of PS with epichlorohydrin (EC), maleic anhydride (MA), acetic anhydride (AA), butadiene, and isoprene in the presence of cationic catalysis such as AICI3, FeCU, BF3 0(C2H5)2, ZnCb, TiCL, and SnCU, have been extensively studied under various conditions for the last 15 years. We have also studied their kinetics, physico-mechanical, thermal, and dielec-... [Pg.263]

By the mid-1930s, catalytic technology entered into petroleum refining. To a greater extent than thermal cracking, catalysis permitted the close control of the rate and direction of reaction. It minimized the formation of unwanted side reactions, such as carbon formation, and overall improved the yield and quality of fuel output. [Pg.990]

Irradiation with UV light isomerized the azobenzene units from the trans to the cis form, while the reverse isomerization occurred thermally in the dark. The cis to trans conversion is catalyzed by both protons and hydroxyl ions. Hence, the catalyzed dark process for tethered azobenzene is greatly modified in comparison with that for free azobenzene. For the tethered azobenzene, beginning at pH 6, the cis to trans return rate sharply decreased with increasing pH up to 10, whereas the rate for free azobenzene rapidly increased in the same pH range owing to OH- catalysis. These observations can be explained by the electrostatic repulsion which lowers the local OH concentration on the polyion surface below that in the bulk aqueous phase. [Pg.54]

Sulfonyl bromides and iodides react similarly217-218-225 copper-salt catalysis in these cases facilitates the additions but is not absolutely necessary however, it influences the stereochemistry of the additions. Addition of sulfonyl iodides226 as well as the uncatalyzed thermal addition of sulfonyl bromides227 to alkynes leads to an exclusive trans-addition, whereas CuBr2 catalysis in the latter case causes the formation of cis-addition products to some extent (11 16%) correspondingly, copper-salt catalysis in sulfonyl chloride additions to alkynes leads to the formation of a mixture of Z,E-isomers228-229 (equation 40). [Pg.189]

Lewis-acid catalysis is effective in intermolecular as well as intramolecular /zomo-Diels-Alder reactions. Thus, complex polycyclic compounds 93 have been obtained in good yield by the cycloaddition of norbornadiene-derived dienynes 92 by using cobalt catalyst, whereas no reaction occurred under thermal conditions [91] (Scheme 3.18). [Pg.128]

A review article entitled "Bulky amido ligands in rare-earth chemistry Syntheses, structures, and catalysis" has been published by Roesky. Benzamidinate ligands are briefly mentioned in this contexD The use of bulky benzamidinate ligands in organolanthanide chemistry was also briefly mentioned in a review article by Okuda et al. devoted to "Cationic alkyl complexes of the rare-earth metals S mthesis, structure, and reactivity." Particularly mentioned in this article are reactions of neutral bis(alkyl) lanthanide benzamidinates with [NMe2HPh][BPh4] which result in the formation of thermally robust ion pairs (Scheme 55). ... [Pg.228]

There are two important ways of adding alkanes to alkenes—the thermal method and the acid-catalysis method." Both give chiefly mixtures, and neither is useful for the preparation of relatively pure compounds in reasonable yields. However, both are useful industrially. In the thermal method, the reactants are heated to high temperatures ( 500°C) at high pressures (150-300 atm) without a catalyst. As an example, propane and ethylene gave 55.5% isopentane, 7.3% hexanes, 10.1% heptanes, and 7.4% alkenes. The mechanism is undoubtedly of a free-radical type and can be illustrated by one possible sequence in the reaction between propane and ethylene ... [Pg.1017]


See other pages where Catalysis thermall is mentioned: [Pg.14]    [Pg.869]    [Pg.14]    [Pg.14]    [Pg.869]    [Pg.14]    [Pg.23]    [Pg.420]    [Pg.899]    [Pg.534]    [Pg.1]    [Pg.265]    [Pg.184]    [Pg.364]    [Pg.223]    [Pg.319]    [Pg.506]    [Pg.66]    [Pg.67]    [Pg.68]    [Pg.202]    [Pg.21]    [Pg.814]    [Pg.153]    [Pg.199]    [Pg.839]    [Pg.332]    [Pg.631]    [Pg.685]    [Pg.596]    [Pg.210]    [Pg.157]    [Pg.285]    [Pg.15]   
See also in sourсe #XX -- [ Pg.48 , Pg.219 ]




SEARCH



Thermal catalysis

© 2024 chempedia.info