Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis sample condition

However, a number of limitations are still evident when tetrafluorohorate and hexafluorophosphate ionic liquids are used in homogeneous catalysis. The major aspect is that these anions are still relatively sensitive to hydrolysis. The tendency to anion hydrolysis is of course much less pronounced than that of the chloroalu-minate melts, hut it still occurs and this has major consequences for their use in transition metal catalysis. For example, the [PF ] anion of l-hutyl-3-methylimida-2olium ([BMIM]) hexafluorophosphate was found (in the author s laboratories) to hydrolyze completely after addition of excess water when the sample was kept for 8 h at 100 °C. Gaseous HF and phosphoric acid were formed. Under the same conditions, only small amounts of the tetrafluorohorate ion of [BMlMjjBFJ was converted into HF and boric acid [10]. The hydrolytic formation of HF from the anion of the ionic liquid under the reaction conditions causes the following problems with... [Pg.215]

We have already mentioned that fundamental studies in catalysis often require the use of single crystals or other model systems. As catalyst characterization in academic research aims to determine the surface composition on the molecular level under the conditions where the catalyst does its work, one can in principle adopt two approaches. The first is to model the catalytic surface, for example with that of a single crystal. By using the appropriate combination of surface science tools, the desired characterization on the atomic scale is certainly possible in favorable cases. However, although one may be able to study the catalytic properties of such samples under realistic conditions (pressures of 1 atm or higher), most of the characterization is necessarily carried out in ultrahigh vacuum, and not under reaction conditions. [Pg.166]

As outlined in Section 2.2.4.1, impurities and catalysts may decrease To significantly a decrease of 100°C is not unusual. The material of construction of the sample cup may act as a catalyst, resulting in surface-induced decomposition which may even be promoted by the sample/surface area ratio in the DSC cup. Therefore, it is important to check if the substance is catalyzed during the DSC experiment and if such catalysis is representative of process conditions. Frequently, substances that are sensitive to catalysis are handled in passivated glass-lined reactors, receptacles, or containers. Another phenomenon to recognize is autocatalytic decomposition. Substances that are susceptible to autocatalytic decomposition have an induction period prior to initiation of rapid decomposition. The same holds for substances that contain inhibitors, which can be depleted. [Pg.56]

Several conditions must be met for successful ETEM investigations. Thin, electron-transparent samples are necessary—this requirement can usually be met with most catalyst powders. Ultrahigh-purity heater materials and sample grids capable of withstanding elevated temperature and gases are required (such as those made of stainless steel or molybdenum). The complex nature of catalysis with gas environments and elevated temperatures requires a stable design of the ETEM instrument to simulate realistic conditions at atomic resolution. [Pg.221]

Most of the techniques discussed above are typically used ex situ for catalyst characterization before and after reaction. This is normally the easiest way to carry out the experiments, and is often sufficient to acquire the required information. However, it is known that the reaction environment plays an important role in determining the structure and properties of working catalysts. Consequently, it is desirable to also try to perform catalytic studies under realistic conditions, either in situ [113,114,157, 191-193] or in the so-called operando mode, with simultaneous kinetics measurements [194-196], In addition, advances in high-throughput (also known as combinatorial) catalysis call for the fast and simultaneous analysis of a large number of catalytic samples [197,198], This represents a new direction for further research. [Pg.27]

The association of sulfur and iron into simple to more complex molecular assemblies allows a great flexibility of electron transfer relays and catalysis in metalloproteins. Indeed, the array of different structures, the interactions with amino-acid residues and solvent and their effect on redox potential and spectroscopic signatures is both inspiring for chemists and electrochemists, and of paramount importance for the study of these centers in native conditions. Most of the simpler natural clusters have been synthesized and studied in the laboratory. Particularly, the multiple redox and spin states can be studied on pure synthetic samples with electrochemical and spectroscopic techniques such as EPR or Fe Mossbauer spectroscopy. More complex assembhes still resist structural... [Pg.604]

In dynamic ETEM studies, to determine the nature of the high temperature CS defects formed due to the anion loss of catalysts at the operating temperature, the important g b criteria for analysing dislocation displacement vectors are used as outlined in chapter 2. (HRTEM lattice images under careful conditions may also be used.) They show that the defects are invisible in the = 002 reflection suggesting that b is normal to the dislocation line. Further sample tilting in the ETEM to analyse their habit plane suggests the displacement vector b = di aj2, b/1, 0) and the defects are in the (120) planes (as determined in vacuum studies by Bursill (1969) and in dynamic catalysis smdies by Gai (1981)). In simulations of CS defect contrast, surface relaxation effects and isotropic elasticity theory of dislocations (Friedel 1964) are incorporated (Gai 1981). [Pg.88]


See other pages where Catalysis sample condition is mentioned: [Pg.442]    [Pg.7]    [Pg.676]    [Pg.57]    [Pg.1021]    [Pg.228]    [Pg.154]    [Pg.21]    [Pg.227]    [Pg.1021]    [Pg.68]    [Pg.100]    [Pg.910]    [Pg.129]    [Pg.190]    [Pg.190]    [Pg.190]    [Pg.191]    [Pg.144]    [Pg.417]    [Pg.369]    [Pg.105]    [Pg.219]    [Pg.244]    [Pg.244]    [Pg.21]    [Pg.1]    [Pg.55]    [Pg.97]    [Pg.205]    [Pg.46]    [Pg.239]    [Pg.133]    [Pg.244]    [Pg.587]    [Pg.385]    [Pg.647]    [Pg.31]    [Pg.62]    [Pg.65]    [Pg.111]    [Pg.647]    [Pg.287]   
See also in sourсe #XX -- [ Pg.749 ]




SEARCH



Conditional sampling

Sample conditioning

© 2024 chempedia.info