Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis of nitration

Ottley C. J., Davison W., and Edmunds W. M. (1997) Chemical catalysis of nitrate reduction by iron(ll). Geochim. Cosmochim. Acta 61, 1819-1828. [Pg.4277]

Chemical catalysis of nitrate reduction by iron(II). Geochimica Cosmochimica Acta, 61 1819-1828. [Pg.268]

In the previous section efficient catalysis of the Diels-Alder reaction by copper(II)nitrate was encountered. Likewise, other bivalent metal ions that share the same row in the periodic system show catalytic activity. The effects of cobalt(II)nitrate, nickel(II)nitrate, copper(II)nitrate and zinc(ll)nitrate... [Pg.56]

As anticipated from the complexation experiments, reaction of 4.42 with cyclopentadiene in the presence of copper(II)nitrate or ytterbium triflate was extremely slow and comparable to the rate of the reaction in the absence of Lewis-acid catalyst. Apparently, Lewis-acid catalysis of Diels-Alder reactions of p-amino ketone dienophiles is not practicable. [Pg.115]

Fortunately, in the presence of excess copper(II)nitrate, the elimination reaction is an order of magnitude slower than the desired Diels-Alder reaction with cyclopentadiene, so that upon addition of an excess of cyclopentadiene and copper(II)nitrate, 4.51 is converted smoothly into copper complex 4.53. Removal of the copper ions by treatment with an aqueous EDTA solution afforded in 71% yield crude Diels-Alder adduct 4.54. Catalysis of the Diels-Alder reaction by nickel(II)nitrate is also... [Pg.116]

Sulphuric acid catalysed nitration in concentrated nitric acid, but the effect was much weaker than that observed in nitration in organic solvents ( 3.2.3). The concentration of sulphuric acid required to double the rate of nitration of i-nitroanthraquinone was about 0-23 mol 1, whereas typically, a concentration of io mol 1 will effect the same change in nitration in mixtures of nitric acid and organic solvents. The acceleration in the rate was not linear in the concentration of catalyst, for the sensitivity to catalysis was small with low concentrations of sulphuric acid, but increased with the progressive addition of more catalyst and eventually approached a linear acceleration. [Pg.8]

Unlike the effect of sulphuric acid upon nitration in nitric acid ( 2.2.3 where zeroth-order reactions are unknown), the form of the catalysis of zeroth-order nitration in nitromethane by added sulphuric acid does not deviate from a first-order dependence with low concentrations of catalyst. ... [Pg.41]

The catalysis was very strong, for in the absence of nitrous acid nitration was very slow. The rate of the catalysed reaction increased steeply with the concentration of nitric acid, but not as steeply as the zeroth-order rate of nitration, for at high acidities the general nitronium ion mechanism of nitration intervened. [Pg.58]

Nitration at the encounter rate and nitrosation As has been seen ( 3.3), the rate of nitration by solutions of nitric acid in nitromethane or sulpholan reaches a limit for activated compounds which is about 300 times the rate for benzene imder the same conditions. Under the conditions of first-order nitration (7-5 % aqueous sulpholan) mesitylene reacts at this limiting rate, and its nitration is not subject to catalysis by nitrous acid thus, mesitylene is nitrated by nitronium ions at the encounter rate, and under these conditions is not subject to nitration via nitrosation. The significance of nitration at the encounter rate for mechanistic studies has been discussed ( 2.5). [Pg.60]

Recent years, the authors have innovatively proposed a method by using the aqueous ammonia liquor containing hexamine cobalt (II) complex to scrub the NO-containing flue gases[6-9], since several merits of this complex have been exploited such as (1) activation of atmospheric O2 to a peroxide to accelerate the O2 solubility, (2) coordination of NO, as NO is a stronger ligand than NH3 and H2O of Co( II) complexes to enhance the NO absorption and (3), catalysis of NO oxidation to further improve the absorption both of O2 and NO. Thus, a valuable product of ammonium nitrate can be obtained. [Pg.229]

Bacteria have been Implicated in the formation of N-nitroso compounds under a wide variety of conditions representing both vitro and vivo situations Mechanisms of participation and/or catalysis Include a) decrease of the pH of the system, b) reduction of nitrate to nitrite, c) adsorption of amine onto the cell surface or cytoplasmic membrane, d) actual enzymatic formation. The literature of the field will be reviewed and experimental evidence which tests the above mechanisms will be presented ... [Pg.157]

We conclude that the major role of bacteria in the nitrosa-tion of dimethylamine is the reduction of nitrate to nitrite and the lowering of the pH of the medium. Furthermore, the complex medium Itself catalyzes nitrosation. The nature of this catalysis is not known, although it could be due to the presence of carbonyl compounds, cysteine, or a variety of other compounds which are known to catalyze nitrosation (17). [Pg.163]

Nitration can be catalyzed by lanthanide salts. For example, the nitration of benzene, toluene, and naphthalene by aqueous nitric acid proceeds in good yield in the presence of Yb(03SCF3)3.5 The catalysis presumably results from an oxyphilic interaction of nitrate ion with the cation, which generates or transfers the N02+ ion.6 This catalytic procedure uses a stoichiometric amount of nitric acid and avoids the excess strong acidity associated with conventional nitration conditions. [Pg.1005]

Entry 5 is an example of nitration in acetic anhydride. An interesting aspect of this reaction is its high selectivity for the ortho position. Entry 6 is an example of the use of trifluoroacetic anhydride. Entry 7 illustrates the use of a zeolite catalyst with improved para selectivity. With mixed sulfuric and nitric acids, this reaction gives a 1.8 1 para ortho ratio. Entry 8 involves nitration using a lanthanide catalyst, whereas Entry 9 illustrates catalysis by Sc(03SCF3)3. Entry 10 shows nitration done directly with N02+BF4, and Entry 11 is also a transfer nitration. Entry 12 is an example of the use of the N02—03 nitration method. [Pg.1006]

The catalysis of the cleavage of carbon-halogen bonds by complexation with metal ions such as silver or mercuric ion is a well-known phenomenon. The compounds susceptible to this action are alkyl halides capable of forming car-bonium ions. The complexed anions such as in mercuric nitrate, mercuric perchlorate, or hydrated mercuric ion do not exhibit a simple relationship between their effect on the total rate and on the relative distribution of products stemming from water or the anion. This evidence is indicative of the following catalytic mechanism ... [Pg.37]

Nitrate and Ammonium. The transformations of nitrogen species may occur under suitable microbial catalysis (5, 36). Nitrate reduction may result in formation of either elemental nitrogen or ammonium. Mass balances over a whole lake have indicated the importance of the denitrification process for the elimination of nitrogen from lakes (37). The conditions for the dis-similative ammonification of nitrate are poorly known (36). Ammonium is also released by the mineralization of biomass. [Pg.476]


See other pages where Catalysis of nitration is mentioned: [Pg.57]    [Pg.241]    [Pg.678]    [Pg.57]    [Pg.678]    [Pg.128]    [Pg.935]    [Pg.4149]    [Pg.57]    [Pg.241]    [Pg.678]    [Pg.57]    [Pg.678]    [Pg.128]    [Pg.935]    [Pg.4149]    [Pg.446]    [Pg.487]    [Pg.489]    [Pg.492]    [Pg.492]    [Pg.493]    [Pg.499]    [Pg.499]    [Pg.499]    [Pg.501]    [Pg.506]    [Pg.212]    [Pg.380]    [Pg.207]    [Pg.280]    [Pg.253]    [Pg.158]    [Pg.313]    [Pg.317]   
See also in sourсe #XX -- [ Pg.53 , Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 ]




SEARCH



Nitration catalysis

© 2024 chempedia.info