Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cascade cations

Scheme 89 Keteniminium ion-initiated cascade cationic polycycUzation... Scheme 89 Keteniminium ion-initiated cascade cationic polycycUzation...
Fig. 20. (a) Schematic illustration of the formation of a cascade complex (b) a heterodinuclear cation complex of a diloop crown receptor and (c) a typical... [Pg.186]

This is a group of compounds having a ladder-like array of macrorings through which a cation or other species may cascade. Examples of such structures may be found in Ref. 2. [Pg.7]

Closely related to the polyepoxide cascade procedure for the synthesis of polycyclic systems is Corey s biomimetic-type, nonenzymatic, oxirane-initiated (Lewis acid-promoted) cation-olefin polyannulation. By this strategy, compound 96, containing the tetracyclic core of scalarenedial, was constructed by exposure of the acyclic epoxy triene precursor 95 to MeAlCl2-promoted cyclization reaction conditions (Scheme 8.25) [45]. [Pg.288]

A very impressive multiple cationic domino reaction was used in the enan-tioselective total synthesis of (-)-gilbertine (1-190), described by Blechert and coworkers [50]. When the tertiary alcohol 1-184 is treated with TFA, a carbocation is formed which undergoes a cascade of cyclizations to afford 1-190 in very good yield (61 %) (Scheme 1.44). The cations 1-185 to 1-189 can be assumed as intermediates. [Pg.39]

Insulin binding to the extracellular side of cell membranes initiates the insulin cascade , a series of phosphorylation/dephosphorylation steps. A postulated mechanism for vanadium is substitution of vanadate for phosphate in the transition state structure of protein tyrosine phosphatases (PTP).267,268 In normal physiological conditions, the attainable oxidation states of vanadium are V111, Viv and Vv. Relevant species in solution are vanadate, (a mixture of HV042-/ H2VOO and vanadyl V02+. Vanadyl is not a strong inhibitor of PTPs, suggesting other potential mechanisms for insulin mimesis for this cation. [Pg.833]

The existence of two different rhodium species co-existing on the silica support can be used as an advantage by controlling their relative amount. Under standard hydroformylation conditions, the cationic species and the neutral hydride complex are both present in significant amounts. Hence hydroformylation and hydrogenation will both proceed under a CO/H2 atmosphere. Indeed a clean one-pot reaction of 1-octene to 1-nonanol was performed, using the supported catalyst for a hydroformylation-hydrogenation cascade reaction. 98 % of the 1-octene was converted in the... [Pg.48]

H receptor activation induces depolarizing responses in many brain areas, notably hypothalamus, thalamus and cerebral cortex. In vertebrate brain, many of these effects are mediated by opening cation channels. H,-induced excitation can also occur by blockade of KUak conductances [ 1 ]. In other cases, however, H, receptors can attenuate neuronal excitation by activating certain voltagegated potassium channels. Most of the H, receptor-induced conductance changes are mediated by the IP3-Ca2+ cascade. [Pg.256]

This cascade in research is reflected in the increasing amount of literature published each year on the biochemical behavior of the lithium ion and the aim of this article is to bring together much of this information, emphasizing the ubiquity of this small, apparently nonessential, metal cation in biology. [Pg.4]

A different concept of chiral recognition was used by Lehn et al. (1978) for the differentiation between pairs of enantiomeric anions. Following the terminology used for metallo-enzymes, the chiral crown ether [309] acts as an apo-receptor, complexing a metal cation and thus becoming a chiral metal receptor that may discriminate between enantiomeric anions (cascade-type complexation). Extraction experiments with racemic mandelic acid dissolved in... [Pg.407]

The formation of the heterocycle 1 from the xylylene-bis-phosphonium salt 2 and PCI3 proceeds via a detectable intermediate 3 in a cascade of condensation reactions that is terminated by spontaneous heterolysis of the last remaining P-Cl bond in a cyclic bis-ylide-substituted chlorophosphine formed (Scheme 1) [15]. The reaction scheme is applicable to an arsenic analogue of 1 [15] and to bis-phosphonio-benzophospholides with different triaryl-, aryl-alkyl- and aryl-vinyl-phosphonio groups [16, 18, 19], but failed for trialkylphosphonio-substituted cations here, insufficient acidity prohibited obviously quantitative deprotonation of the phosphonium salts, and only mixtures of products with unreacted starting materials were obtained [19]. The cations were isolated as chloride or bromide salts, but conversion of the anions by complexation with Lewis-acids or metathesis was easily feasible [16, 18, 19] and even salts with organometallic anions ([Co(CO)4] , [CpM(CO)3] (M=Mo, W) were accessible [20]. [Pg.179]

The receptors start a second messenger cascade that is initiated by activation of G-proteins in the cell. These, in turn, interact with membrane-bound adenylyl cyclase, which catalyzes the formation of cyclic adenine monophosphate (cAMP) and opening of cAMP-gated cation channels. Depolarization then brings about an action potential, which travels along the axon of the olfactory sensory neuron. Many of the molecular components of this cascade are olfactoiy specific. [Pg.92]

Electrons are transferred singly to any species in solution and not in pairs. Organic electrochemical reactions therefore involve radical intermediates. Electron transfer between the electrode and a n-system, leads to the formation of a radical-ion. Arenes, for example are oxidised to a radical-cation and reduced to a radical-anion and in both of these intermediates the free electron is delocalised along the 7t system. Under some conditions, where the intermediate has sufficient lifetime, these electron transfer steps are reversible and a standard electrode potential for the process can be measured. The final products from an electrochemical reaction result from a cascade of chemical and electron transfer steps. [Pg.9]


See other pages where Cascade cations is mentioned: [Pg.1094]    [Pg.185]    [Pg.68]    [Pg.442]    [Pg.1094]    [Pg.17]    [Pg.92]    [Pg.119]    [Pg.965]    [Pg.7]    [Pg.272]    [Pg.168]    [Pg.168]    [Pg.231]    [Pg.138]    [Pg.350]    [Pg.89]    [Pg.33]    [Pg.193]    [Pg.808]    [Pg.822]    [Pg.80]    [Pg.1]    [Pg.84]    [Pg.545]    [Pg.345]    [Pg.294]    [Pg.259]    [Pg.862]    [Pg.90]    [Pg.236]    [Pg.141]    [Pg.397]   
See also in sourсe #XX -- [ Pg.2 , Pg.135 ]

See also in sourсe #XX -- [ Pg.135 ]

See also in sourсe #XX -- [ Pg.135 ]

See also in sourсe #XX -- [ Pg.2 , Pg.135 ]

See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Cationic cascade cyclization

© 2024 chempedia.info