Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cascade carbometallations

Zipper-Mode Cascade Carbometallation for Construction of Polycyclic Structures. [Pg.1479]

A palladium-catalysed carbometallation-alkyne cross coupling cascade process has been reported for the stereo- and regio-controlled synthesis of dibenzoxepines with substituted exocyclic alkene functionality <06OL1685>. [Pg.448]

Very recently, Ma has reported a rhodium-catalyzed route to 18,19-norsteroid skeletons from bis-allenes, involving a cyclometallation-carbometallation-reductive elimination-Diels-Alder reaction cascade process.410... [Pg.362]

Cascade silylcarbocyclization reactions tiave been developed based on the fact that it is possible to realize successive intramolecular carbocyclizations, as long as the competing reductive elimination is slower than the carbometallation. For example, the reaction of dodec-6-ene-l,ll-diyne 67 with PhMe2SiH catalyzed by Rh(acac)(CO)2 at 50°C under 1 atm CO gives bis(exo-methylenecyclopentyl) 68 in 55% yield [44]. The reaction is stereo-specific that is, (6 )- and (6Z)-dodec-6-ene-l,ll-diynes, ( )-67 and (Z)-67, afford R, R )-68 and (S, R -68 respectively. A possible mechanism for this reaction is outlined in Scheme 7.20. It should be noted that none of the tricyclic product is formed even though a third carbocyclization in the intermediate III.2c is conceptually possible. [Pg.142]

Yttrocene complexes catalyze the cascade cyclization/hydrosilylation of trienes to form saturated silylated bicyclic compounds.For example, reaction of the 4-silyloxy-4-vinyl-l,6-hexadiene 69 and phenylsilane catalyzed by Gp 2YMe(THF) at room temperature for 1 h followed by oxidation of crude 70a gave [3.3.0]bicyclic diol 70b in 73% yield over two steps as a single diastereomer (Scheme 18). Selective conversion of 69 to 70a presumably requires initial 1,2-hydrometallation of one of the less-hindered G=G bonds to form alkylyttrium alkene complex II (Scheme 18). Selective S-exo carbometallation of II in preference to -exo carbometallation would form cyclopentyl-methylyttrium complex III (Scheme 18). Gyclization of III via a chairlike transition state would form the strained /r< /75 -fused alkylyttrium complex IIIl, which could undergo silylation to form 70a. [Pg.395]

Yttrium-catalyzed cascade cyclization/hydrosilylation of 3-(3-butynyl)-l,5-hexadienes was stereospecific, and syn-19 (R =Gy, R = OGPh3) underwent cascade cyclization/hydrosilylation to form 80b (R = Gy, R = OGPh3) in 97% yield as a single diastereomer (Scheme 20). The regio- and stereoselective conversion of syn-19 to 80b was proposed to occur through an initial 5- x -intramolecular carbometallation via a chairlike transition state that resembles alkenyl olefin eomplex syn- m. followed by S-exo intramolecular carbometallation via a boatlike transition state that resembles alkyl olefin complex boat-llm. The second intramolecular carbometallation presumably occurs via a boatlike transition state to avoid the unfavorable 1,3-interaction present in the corresponding chairlike transition state (Scheme 20). [Pg.397]

Rhodium carbonyl complexes also catalyze the cascade cyclization/hydrosilylation of 6-dodecene-l,l 1-diynes to form silylated tethered 2,2 -dimethylenebicyclopentanes. For example, reaction of ( )-85 with dimethylphenylsilane catalyzed by Rh(acac)(CO)2 in toluene at 50 °G under GO (1 atm) gave 86a in 55% yield as a single diastereomer (Equation (56)). Rhodium-catalyzed caseade cyclization/hydrosilylation of enediynes was stereospecific, and reaction of (Z)-85 under the conditions noted above gave 86b in 50% yield as a single diastereomer (Equation (57)). Rhodium(i)-catalyzed cascade cyclization/hydrosilylation of 6-dodecene-1,11-diynes was proposed to occur via silyl-metallation of one of the terminal G=G bonds of the enediyne with a silyl-Rh(iii) hydride complex, followed by two sequential intramolecular carbometallations and G-H reductive elimination. ... [Pg.400]

In addition to cationic cyclizations, other conditions for the cyclization of polyenes and of ene-ynes to steroids have been investigated. Oxidative free-radical cyclizations of polyenes produce steroid nuclei with exquisite stereocontrol. For example, treatment of (259) and (260) with Mn(III) and Cu(II) afford the D-homo-5a-androstane-3-ones (261) and (262), respectively, in approximately 30% yield. In this cyclization, seven asymmetric centers are established in one chemical step (226,227). Another intramolecular cyclization reaction of iodo-ene poly-ynes was reported using a carbopaUadation cascade terminated by carbonylation. This carbometalation—carbonylation cascade using CO at 111 kPa (1.1 atm) at 70°C converted an acycHc iodo—tetra-yne (263) to a D-homo-steroid nucleus (264) [162878-44-6] in approximately 80% yield in one chemical step (228). Intramolecular aimulations between two alkynes and a chromium or tungsten carbene complex have been examined for the formation of a variety of different fiised-ring systems. A tandem Diels-Alder—two-alkyne annulation of a triynylcarbene complex demonstrated the feasibiHty of this strategy for the synthesis of steroid nuclei. Complex (265) was prepared in two steps from commercially available materials. Treatment of (265) with Danishefsky s diene in CH CN at room temperature under an atmosphere of carbon monoxide (101.3 kPa = 1 atm), followed by heating the reaction mixture to 110°C, provided (266) in 62% yield (TBS = tert — butyldimethylsilyl). In a second experiment, a sequential Diels-Alder—two-alkyne annulation of triynylcarbene complex (267) afforded a nonaromatic steroid nucleus (269) in approximately 50% overall yield from the acycHc precursors (229). [Pg.442]

Sugihara, T., Coperet, C., Owczarczyk, Z. et al. (1994) Deferred carbonylative esterification in the Pd-catalyzed cyclic carbometalation-carbonylation cascade. J. Am. Chem. Soc., 116, 7923-4. [Pg.338]

Richey and co-workers [30] at Eli Lilly revealed a cascade reaction with the perspective of Suzuki coupling and completed the synthesis of HCl salt 79, an intermediate on the route to selective nuclear hormone receptor modulator. A Pd-catalyzed intramolecular carbometalation of alkyne 76 followed by slow coupling of resulting alkenylpalladium intermediate with w-nitrobo-ronic acid 77 furnished the dibenzoxapine core 78, a seven membered ring in 83% yield (Scheme 9.20). [Pg.343]


See other pages where Cascade carbometallations is mentioned: [Pg.28]    [Pg.38]    [Pg.334]    [Pg.459]    [Pg.28]    [Pg.274]    [Pg.445]    [Pg.28]    [Pg.38]    [Pg.334]    [Pg.459]    [Pg.28]    [Pg.274]    [Pg.445]    [Pg.442]    [Pg.436]    [Pg.494]    [Pg.397]    [Pg.47]    [Pg.27]    [Pg.436]    [Pg.442]    [Pg.31]    [Pg.16]    [Pg.401]    [Pg.1123]    [Pg.211]    [Pg.815]    [Pg.867]    [Pg.1123]   
See also in sourсe #XX -- [ Pg.611 , Pg.622 ]




SEARCH



Carbometalation

Carbometalations

Carbometallations

Cascade carbometallation

Cascade carbometallation

© 2024 chempedia.info