Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carotenoids electronic spectra

NPQ (Rakhimberdieva et al. 2004) exactly matches the absorption spectrum of the carotenoid, 3 -hydrox yech i nenone (Polivka et al. 2005) in the OCP. The OCP is now known to be specifically involved in the phycobilisome-associated NPQ and not in other mechanisms affecting the levels of fluorescence such as state transitions or D1 damage (Wilson et al. 2006). Studies by immunogold labeling and electron microscopy showed that most of the OCP is present in the interthylakoid cytoplasmic region, on the phycobilisome side of the membrane, Figure 1.2 (Wilson et al. 2006). The existence of an interaction between the OCP and the phycobilisomes and thylakoids was supported by the co-isolation of the OCP with the phycobilisome-associated membrane fraction (Wilson et al. 2006, 2007). [Pg.6]

Three-pulse ESEEM spectrum of perdeuterated P-carotene imbedded in Cu-MCM-41 exhibits an echo decay with an echo modulation due to deuterons. The three-pulse ESEEM is plotted as a function of time, and curves are drawn through the maximum and minima. From ratio analysis of these curves, a best nonlinear least-squares lit determines the number of interacting deuterons, the distance (3.3 0.2A), and the isotopic coupling (0.06 0.2MHz). This analysis made it possible to explain the observed reversible forward and backward electron transfer between the carotenoid and Cu2+ as the temperature was cycled (77-300 K). [Pg.169]

Carotenoid radical formation and stabilization on silica-alumina occurs as a result of the electron transfer between carotenoid molecule and the Al3+ electron acceptor site. Both the three-pulse ESEEM spectrum (Figure 9.3a) and the HYSCORE spectrum (Figure 9.3b) of the canthaxanthin/ A1C13 sample contain a peak at the 27A1 Larmor frequency (3.75 MHz). The existence of electron transfer interactions between Al3+ ions and carotenoids in A1C13 solution can serve as a good model for similar interactions between adsorbed carotenoids and Al3+ Lewis acid sites on silica-alumina. [Pg.169]

Photo-oxidation of carotenoids in Ni-MCM-41 produces an intense EPR signal (Figure 9.11) with -value 2.0027 due to the carotenoid radical another, less intense EPR signal, with =2.09 is attributed to an isolated Ni(I) species produced as a result of electron transfer from the carotenoid molecule to Ni(II). It has been reported that Ni(I) ions prepared upon reduction of Ni(II)-MCM-41 by heating in a vacuum or in dry hydrogen exhibits an EPR spectrum with , =2.09 and N=2.5... [Pg.177]

Resonance-stabilized systems include car-boxylate groups, as in formate aliphatic hydrocarbons with conjugated double bonds, such as 1,3-butadiene and the systems known as aromatic ring systems. The best-known aromatic compound is benzene, which has six delocalized k electrons in its ring. Extended resonance systems with 10 or more 71 electrons absorb light within the visible spectrum and are therefore colored. This group includes the aliphatic carotenoids (see p.l32), for example, as well as the heme group, in which 18 k electrons occupy an extended molecular orbital (see p. 106). [Pg.4]

In a broad sense photosynthesis in plants is a photoinduced electron transport reaction. Chlorophyll molecules in the green plants are the main light harvesting molecules. They are assisted by carotenoids and phycocyanins in this act. These molecules have absorption in the visible region covering the whole spectrum from blue to red. The energy absorbed by all these molecules is transferred to chlorophyll a (Chi a), which is the main light sensitive molecule, by mechanisms discussed in Section 6.6.4. [Pg.145]

Miscellaneous Physical Chemistry. A kinetic study has been made of the electrochemical reduction of /8-carotene. The photoelectron quantum yield spectrum and photoelectron microscopy of /3-carotene have been described. Second-order rate constants for electron-transfer reactions of radical cations and anions of six carotenoids have been determined. Electronic energy transfer from O2 to carotenoids, e.g. canthaxanthin [/8,/3-carotene-4,4 -dione (192)], has been demonstrated. Several aspects of the physical chemistry of retinal and related compounds have been reported, including studies of electrochemical reduction, the properties of symmetric and asymmetric retinal bilayers, retinal as a source of 02, and the fluorescence lifetimes of retinal. Calculations have been made of photoisomerization quantum yields for 11-cis-retinal and analogues and of the conversion of even-7r-orbital into odd-TT-orbital systems related to retinylidene Schiff bases. ... [Pg.187]

Information regarding the solution conformation of 13 was derived from the pyropheophorbide ring current induced shifts in the resonance positions of the carotenoid and quinone moieties. These two species were found to be extended away from the tetrapyrrole, rather than folded back across it. The absorption spectrum of 13 was essentially identical to the sum of the spectra of model compounds. The pyropheophorbide fluorescence, however, was strongly quenched by the addition of the quinone. This implies the formation of a C-Phe -Q state via photoinitiated electron transfer from the pyropheophorbide singlet state, as was observed for C-P-Q triads (see Figure 4). Excitation of the molecule in dichloromethane solution at 207 K with a 590 nm laser pulse led to the observation of a carotenoid radical cation transient absorption. Thus, the C-Phe -Q " state can go on via an electron transfer step analogous to step 4 in Figure 4 to yield a final C -Phe-Q state. This state had a lifetime of 120 ns. The quantum yield at 207 K was 0.04. At ambient temperatures, the lifetime of the carotenoid radical cation dropped to about SO ns, and the quantum yield could not be determined accurately because of the convolution of the decay into the instrument response function. [Pg.27]

In the singlet manifold, carotenoids have, like all polyenes, an unusual electronic structure The hrst excited state (Si) has the same symmetry, A, as the ground state, and thus one-photon transitions from So to Si are forbidden. In other words, the Si state does not appear in the absorption (or emission) spectrum of carotenoids (with more than 9 double bonds), which is dominated by the very strong So S2 (B ) transition. Carotenoids also possess a state of symmetry, which may lie near S2, though evidence for the spectroscopic observation of this state remains controversial [132-135]. Finally, some unusual carotenoids with polar substituents, such as peridinin, may also have low-lying charge transfer states [42, 136, 137]. [Pg.120]

Figure 3.18 shows the time-resolved Electron Paramagnetic Resonance (EPR) spectra of the reaction center from Rba. sphaeroides 2.4.1 at low temperatures. At 65 K, the initial spectrum (0.0 ps) can be ascribed to 3P. After its decay, two different spectral patterns ascribable to the T, species of spheroidene appear they are called 3Car(I) and 3Car(II). At higher temperatures, the contribution of 3P becomes much smaller, but those triplet species of carotenoid exhibit basically the same time-resolved spectra. [Pg.39]


See other pages where Carotenoids electronic spectra is mentioned: [Pg.152]    [Pg.150]    [Pg.1251]    [Pg.167]    [Pg.23]    [Pg.89]    [Pg.119]    [Pg.160]    [Pg.171]    [Pg.219]    [Pg.166]    [Pg.485]    [Pg.184]    [Pg.129]    [Pg.280]    [Pg.876]    [Pg.299]    [Pg.97]    [Pg.116]    [Pg.231]    [Pg.627]    [Pg.77]    [Pg.197]    [Pg.11]    [Pg.44]    [Pg.48]    [Pg.49]    [Pg.166]    [Pg.485]    [Pg.258]    [Pg.115]    [Pg.240]    [Pg.275]    [Pg.589]    [Pg.63]    [Pg.231]    [Pg.470]    [Pg.10]    [Pg.143]    [Pg.187]    [Pg.200]    [Pg.333]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Carotenoids spectra

© 2024 chempedia.info