Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids peroxidation products

The former passes into the second on further oxidation with hydrogen peroxide, indicating that it is an a-keto-carboxylic acid. Acid (b) loses carbon dioxide on fusion and gives a neutral substance, CjaHj OgN, m.p. 238°, which was shown to be 6 7-methylenedioxy-A-methylphenanthri-done (I), by comparison with a synthetic specimen. The position of the carboxyl group in (b) could not be determined by synthetic methods but is probably at since dihydrolycorineanhydromethine, Cl 7 7 2 ) m.p. 87-5° [picrate, m.p. 174° (dec.) methiodide, m.p. 236° (dec.)] on distillation with zinc dust yields a mixture of phenanthridine, 1-methyl-phenanthridine and 6 7-methylenedioxyphenanthridine, m.p. 142° [picrate, m.p. 257° (dec.)], the identity of the two latter being established by comparison with the synthetic products. These results indicate for lycorineanhydromethine formula (II). [Pg.407]

In 1934 the transformation of 2 -hydroxychalcones to flavonols in the presence of hydrogen peroxide and sodium hydroxide was reported simultaneously by Algar and Flynn in Ireland and Oyamada in Japan However, many reports following the original disclosures showed that the Algar-Flynn-Oyamada reaction could lead to several products including aurones 4, dihydroflavonols 5, 2-benzyl-2-hydroxydihydrobenzofuran-3-ones 6, and 2-arylbenzofuran-3-carboxylic acids... [Pg.496]

The observation that addition of imidazoles and carboxylic acids significantly improved the epoxidation reaction resulted in the development of Mn-porphyrin complexes containing these groups covalently linked to the porphyrin platform as attached pendant arms (11) [63]. When these catalysts were employed in the epoxidation of simple olefins with hydrogen peroxide, enhanced oxidation rates were obtained in combination with perfect product selectivity (Table 6.6, Entry 3). In contrast with epoxidations catalyzed by other metals, the Mn-porphyrin system yields products with scrambled stereochemistry the epoxidation of cis-stilbene with Mn(TPP)Cl (TPP = tetraphenylporphyrin) and iodosylbenzene, for example, generated cis- and trans-stilbene oxide in a ratio of 35 65. The low stereospecificity was improved by use of heterocyclic additives such as pyridines or imidazoles. The epoxidation system, with hydrogen peroxide as terminal oxidant, was reported to be stereospecific for ris-olefins, whereas trans-olefins are poor substrates with these catalysts. [Pg.202]

In addition, also nonheme iron catalysts containing BPMEN 1 and TPA 2 as ligands are known to activate hydrogen peroxide for the epoxidation of olefins (Scheme 1) [20-26]. More recently, especially Que and coworkers were able to improve the catalyst productivity to nearly quantitative conversion of the alkene by using an acetonitrile/acetic acid solution [27-29]. The carboxylic acid is required to increase the efficiency of the reaction and the epoxide/diol product ratio. The competitive dihydroxylation reaction suggested the participation of different active species in these oxidations (Scheme 2). [Pg.85]

MnP is the most commonly widespread of the class II peroxidases [72, 73], It catalyzes a PLC -dependent oxidation of Mn2+ to Mn3+. The catalytic cycle is initiated by binding of H2O2 or an organic peroxide to the native ferric enzyme and formation of an iron-peroxide complex the Mn3+ ions finally produced after subsequent electron transfers are stabilized via chelation with organic acids like oxalate, malonate, malate, tartrate or lactate [74], The chelates of Mn3+ with carboxylic acids cause one-electron oxidation of various substrates thus, chelates and carboxylic acids can react with each other to form alkyl radicals, which after several reactions result in the production of other radicals. These final radicals are the source of autocataly tic ally produced peroxides and are used by MnP in the absence of H2O2. The versatile oxidative capacity of MnP is apparently due to the chelated Mn3+ ions, which act as diffusible redox-mediator and attacking, non-specifically, phenolic compounds such as biopolymers, milled wood, humic substances and several xenobiotics [72, 75, 76]. [Pg.143]

Oxidative damage to membrane polyunsaturated fatty acids leads to the formation of numerous lipid peroxidation products, some of which can be measured as index of oxidative stress, including hydrocarbons, aldehydes, alcohols, ketones, and short carboxylic acids. [Pg.275]

The photolysis of carboxylic acids and derivatives as lactones, esters and anhydrides can yield decarboxylated products 253>. This reaction has been utilized in the synthesis of a-lactones from cyclic diacyl peroxides 254) (2.34) and in the synthesis of [2,2]paracyclophane by bis-decarboxylation of a lactone precursor (2.35) 255). This latter product was also obtained by photoinduced desulfurization of the analogous cyclic sulfide in the presence of triethyl phosphite 256). [Pg.31]

Reactions of O2 with esters R C(0)0R also pass nucleophilic substitution as an initial step (Sawyer and Gibian 1979). Final products are acyl peroxides or carboxylic acids. The following set of equations explains the product formation ... [Pg.56]

Synthetic operations involving ozonolysis lead to formation of aldehydes, ketones or carboxylic acids, as shown in Scheme 16, or to various peroxide compounds, as depicted in Scheme 7 (Section V.B.5), depending on the nature of the R to R substituents and the prevalent conditions of reaction no effort is usually made to isolate either type of ozonide, but only the final products. This notwithstanding, intermediates 276 and 278 are prone to qualitative, quantitative and structural analysis. The appearance of a red-brown discoloration during ozonization of an olefin below — 180°C was postulated as due to formation of an olefin-ozone complex, in analogy to the jr-complexes formed with aromatic compounds however, this contention was contested (see also Section V1I.C.2). [Pg.717]


See other pages where Carboxylic acids peroxidation products is mentioned: [Pg.198]    [Pg.513]    [Pg.889]    [Pg.1169]    [Pg.344]    [Pg.298]    [Pg.219]    [Pg.1059]    [Pg.7]    [Pg.100]    [Pg.256]    [Pg.1002]    [Pg.1129]    [Pg.64]    [Pg.570]    [Pg.157]    [Pg.15]    [Pg.117]    [Pg.1438]    [Pg.388]    [Pg.390]    [Pg.462]    [Pg.138]    [Pg.68]    [Pg.291]    [Pg.131]    [Pg.788]    [Pg.562]    [Pg.219]    [Pg.162]    [Pg.410]    [Pg.496]    [Pg.496]    [Pg.543]    [Pg.545]    [Pg.572]    [Pg.623]    [Pg.685]    [Pg.968]    [Pg.1094]    [Pg.1106]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Carboxylic acids production

Carboxylic acids products

Carboxylic production

© 2024 chempedia.info