Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic addition carboxylic acids

The chemistry of 1,3-dioxins containing four double bonds is poorly developed. A few examples of nucleophilic additions have been demonstrated. The proton-catalyzed addition of alcohol or carboxylic acid nucleophiles to anhydro derivatives of acetylsalicylic acid - new prodrugs of aspirin - was reported to give the C-2 O-substituted 1,3-dioxanes in 41-60% yield (Equation 19) <2001TL5231, 2003CRC265>. [Pg.775]

The mechanism of nitrile hydrolysis involves acid or base promoted addition of water across the triple bond. This gives an intermediate imidate that tautomerizes to an amide. The amide is then hydrolyzed to the carboxylic acid. The addition of water to the nitrile resembles the hydration of an alkyne (eq. 3.52). The oxygen of water behaves as a nucleophile and bonds to the electrophilic carbon of the nitrile. Amide hydrolysis will be discussed in Section 10.20. [Pg.300]

We commented earlier in this chapter that carboxylic acids are similar in some respects to both alcohols and ketones. Like alcohols, carboxylic acids can be deprotonated to give anions, which are good nucleophiles in Sn2 reactions. Like ketones, carboxylic acids undergo addition of nucleophiles to the carbonyl group. In addition, carboxylic acids undergo other reactions characteristic of neither alcohols nor ketones. Figure 15.2 shows some of the general reactions of carboxylic acids. [Pg.622]

Epoxides provide another useful a -synthon. Nucleophilic ring opening with dianions of carboxylic acids (P.L. Creger, 1972) leads to y-hydroxy carboxylic acids or y-lactones. Addition of imidoester anions to epoxides yields y-hydroxyaldehyde derivatives after reduction (H.W. Adickes, 1969). [Pg.63]

Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds its central theme is a fundamental reaction type nucleophilic addition to carbonyl groups The principles of nucleophilic addition to aide hydes and ketones developed here will be seen to have broad applicability m later chap ters when transformations of various derivatives of carboxylic acids are discussed... [Pg.703]

Esterification of carboxylic acids involves nucleophilic addition to the carbonyl group as a key step In this respect the carbonyl group of a carboxylic acid resembles that of an aldehyde or a ketone Do carboxylic acids resemble aldehydes and ketones m other ways Do they for example form enols and can they be halogenated at their a carbon atom via an enol m the way that aldehydes and ketones can ... [Pg.815]

The first stage of the mechanism is exactly the same as for nucleophilic addition to the carbonyl group of an aldehyde or ketone Many of the same nucleophiles that add to aldehydes and ketones—water (Section 17 6) alcohols (Section 17 8) amines (Sections 17 10-17 11)—add to the carbonyl groups of carboxylic acid derivatives... [Pg.837]

Tetrahedral intermediate (Section 19.14 and Chapter 20) The key intermediate in nucleophilic acyl substitution. Formed by nucleophilic addition to the carbonyl group of a carboxylic acid derivative. [Pg.1295]

Carboxylic acid derivatives, CH3C(=0)Z, are similar to aldehydes and ketones in that they contain a polar carbonyl group. Therefore, nucleophiles should add to the carbonyl carbon, although the rate of addition may depend on the Z group. [Pg.149]

Chiral oxazolines developed by Albert I. Meyers and coworkers have been employed as activating groups and/or chiral auxiliaries in nucleophilic addition and substitution reactions that lead to the asymmetric construction of carbon-carbon bonds. For example, metalation of chiral oxazoline 1 followed by alkylation and hydrolysis affords enantioenriched carboxylic acid 2. Enantioenriched dihydronaphthalenes are produced via addition of alkyllithium reagents to 1-naphthyloxazoline 3 followed by alkylation of the resulting anion with an alkyl halide to give 4, which is subjected to reductive cleavage of the oxazoline moiety to yield aldehyde 5. Chiral oxazolines have also found numerous applications as ligands in asymmetric catalysis these applications have been recently reviewed, and are not discussed in this chapter. ... [Pg.237]

The effect of a carboxy group is illustrated by the reactivity of 2-bromopyridine-3- and 6-carboxylic acids (resonance and inductive activation, respectively) (cf. 166) to aqueous acid under conditions which do not give hydroxy-debromination of 2-bromopyridine and also by the hydroxy-dechlorination of 3-chloropyridine-4-car-boxylic acid. The intervention of intermolecular bifunctional autocatalysis by the carboxy group (cf. 237) is quite possible. In the amino-dechlorination (80°, 4 hr, petroleum ether) of 5-carbethoxy-4-chloropyrimidine there is opportunity for built-in solvation (167) in addition to electronic activation. This effect of the carboxylate ion, ester, and acid and its variation with charge on the nucleophile are discussed in Sections I,D,2,a, I,D,2,b, and II,B, 1. A 5-amidino group activates 2-methylsulfonylpyridine toward methanolic am-... [Pg.228]

The reaction of wasabi phytoalexin (109) with excess 15% aqueous NaSMe gives methyl 2-methylthioindole-3-carboxylate (184,70%) and 140 (20%). In this reaction, formation of 2-methylthioindole-3-carboxylic acid (185) is not observed under various reaction conditions. The fact indicates that once 140 is formed, it does not undergo nucleophilic substitution reaction. In addition, hydrolysis of the... [Pg.126]

The second fundamental reaction of carbonyl compounds, nucleophilic acyl substitution, is related to the nucleophilic addition reaction just discussed but occurs only with carboxylic acid derivatives rather than with aldehydes and ketones. When the carbonyl group of a carboxylic acid derivative reacts with a nucleophile, addition occurs in the usual way, but the initially formed tetra-... [Pg.691]

As a general rule, nucleophilic addition reactions are characteristic only of aldehydes and ketones, not of carboxylic acid derivatives. The reason for the difference is structural. As discussed previously in A Preview of Carbonyl Compounds and shown in Figure 19.14, the tetrahedral intermediate produced by addition of a nucleophile to a carboxylic acid derivative can eliminate a leaving group, leading to a net nucleophilic acyl substitution reaction. The tetrahedral intermediate... [Pg.723]

Figure 19.14 Carboxylic acid derivatives have an electronegative substituent Y = -Br, —Cl, -OR, -NR2 that can be expelled as a leaving group from the tetrahedral intermediate formed by nucleophilic addition. Aldehydes and ketones have no such leaving group and thus do not usually undergo this reaction. Figure 19.14 Carboxylic acid derivatives have an electronegative substituent Y = -Br, —Cl, -OR, -NR2 that can be expelled as a leaving group from the tetrahedral intermediate formed by nucleophilic addition. Aldehydes and ketones have no such leaving group and thus do not usually undergo this reaction.
Following formation of the amide intermediate, a second nucleophilic addition of hydroxide ion to the amide carbonyl group then yields a tetrahedral alkoxide ion, which expels amide ion, NHZ-, as leaving group and gives the car-boxylate ion, thereby driving the reaction toward products. Subsequent acidification in a separate step yields the carboxylic acid. We ll look at this process in more detail in Section 21.7. [Pg.769]

Nitriles are similar in some respects to carboxylic acids and are prepared either by SN2 reaction of an alkyl halide with cyanide ion or by dehydration of an amide. Nitriles undergo nucleophilic addition to the polar C=N bond in the same way that carbonyl compounds do. The most important reactions of nitriles are their hydrolysis to carboxylic acids, reduction to primary amines, and reaction with organometallic reagents to yield ketones. [Pg.774]


See other pages where Nucleophilic addition carboxylic acids is mentioned: [Pg.399]    [Pg.399]    [Pg.765]    [Pg.765]    [Pg.765]    [Pg.241]    [Pg.733]    [Pg.156]    [Pg.792]    [Pg.510]    [Pg.811]    [Pg.831]    [Pg.288]    [Pg.226]    [Pg.224]    [Pg.487]    [Pg.54]    [Pg.426]    [Pg.811]    [Pg.831]    [Pg.372]    [Pg.251]    [Pg.82]    [Pg.763]   


SEARCH



Carboxylic Acid Additives

Carboxylic Acids and Their Derivatives Nucleophilic Addition-Elimination at the Acyl Carbon

Carboxylic acids addition

Carboxylic acids nucleophilic

Carboxylic acids nucleophilic addition-elimination

Nucleophilic addition carboxylic acid derivatives

Nucleophilic addition reactions carboxylic acid derivatives

Nucleophilicity acids

© 2024 chempedia.info