Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids enantioselective synthesis

An application of this method is the enantioselective synthesis of a-amino acids [e.g., (5)-phenyl-glycine (11)]10. Hence, 8 can be regarded as a chiral synthetic equivalent of a carboxyl group. [Pg.700]

An enantioselective synthesis of both (R)- and (5)-a-alkylcysteines 144 and 147 is based on the phase-transfer catalytic alkylation of fert-butyl esters of 2-phenyl-2-thiazoline-4-carboxylic acid and 2-ort/ro-biphenyl-2-thiazoline-4-carboxylic acid, 142 and 145 <06JOC8276>. Treatment of 142 and 145 with alkyl halides and potassium hydroxide in the presence of chiral catalysts 140 and 141 gives the alkylated products, which are hydrolyzed to (R)- and (S)-a-alkylcysteines 144 and 147, respectively, in high enantioselectivity. This method may have potential for the practical synthesis of chiral a-alkylcysteines. [Pg.254]

In another study, an enantioselective assay for the analysis of the enantiomer composition of monomethyl 4-(2, 3 -dichlorophenyl)-2,6-dimethyl-l,4-dihydropyridine-3,5-dicarboxylic acid on the tBuCQN-CSP was proposed (Rs = 3.4) [49], This chiral carboxylic acid is the synthesis intermediate and the primary metabolite... [Pg.82]

Acid hydrolysis of tetrahydrooxazines 407 is well known and widely used for the synthesis of amino alcohols 408 or for the enantioselective synthesis of aldehydes 409, which can be transformed to carboxylic acids by mild oxidation [78AHC(23)1 87JCS(P1)515, 87T4979 90JOC2114]. [Pg.450]

A new stereocenter is formed when a synthon 143 with umpoled carbonyl reactivity (d reactivity) is introduced into aldehydes or imines. The enantioselective variant of this type of reaction was a longstanding problem in asymmetric synthesis. The very large majority of a-hetero-snbstitnted carbanions which serve as eqnivalents for synthons like 142 and 143 lead to racemic products with aldehydes or imines. However, enantiomerically pnre acylions and a-hydroxy carboxylic acids or aldehydes (144 and ent-144, respectively) as well as a-amino acids and aldehydes (145 and ent-145) are accessible either by nsing chiral d reagents or by reacting the components in the presence of chiral additives (Scheme 18). [Pg.877]

Ll-Rh complex was employed for the enantioselective synthesis of (S)-2-(4-fluorophe-nyl)-3-mefhylbutanoic acid (98% ee) [107], while the Pr-DuPhos-Rh complex was utilized for the enantioselective hydrogenation of a,/ -unsaturated carboxylic acids, as exemplified by tiglic acid [29]. [Pg.18]

Ammonia lyases catalyze the enantioselective addition of ammonia to an activated double bond. A one-pot, three-step protocol was developed for the enantioselective synthesis of L-arylalanines 50 using phenylalanine ammonia lyase (PAL) in the key step (Scheme 2.20). After formation of the unsaturated esters 48 in situ via a Wittig reaction from the corresponding aldehydes, addition of porcine Ever esterase and basification of the reaction mixture resulted in hydrolysis to the carboxylic acids 49. Once this reaction had gone to completion, introduction of PAL and further addition of ammonia generated the amino acids 50 in good yield and excellent optical purity [22]. [Pg.31]

A method for enantioselective synthesis of carboxylic acid derivatives is based on alkylation of the enolates of /V-acyl oxazolidinones.59 The lithium enolates have the structures shown because of the tendency for the metal cation to form a chelate. [Pg.30]

A procedure for enantioselective synthesis of carboxylic acids is based on sequential alkylation of the oxazoline 8 via its lithium salt. Chelation by the methoxy group leads preferentially to the transition state in which the lithium is located as shown. The lithium acts as a Lewis acid in directing the approach of the alkyl halide. This is reinforced by a steric effect from the phenyl substituent. As a result, alkylation occurs predominantly from the lower face of the anion. The sequence in which the groups R and R are introduced... [Pg.38]

Therefore better methods for the chiral reduction of indole-2-carboxylic acid derivatives would provide an elegant synthesis of this intermediate. A study by Kuwano and Kashiwabara of the reduction of indole derivatives into the corresponding indohnes found that a range of the more common ligand systems gave almost no enantioselectivity but the TRAP ligand gave the chiral indolines in up to 95 % ee for reduction of the methyl ester (B, R=Me, R =H). Further developments are awaited. [Pg.4]

The (diastereoselective) conjugate addition of silylcuprate reagents to a variety of chiral derivatives of a,(3-unsaturated carboxylic acids can be used to prepare optically active p-silyl esters.258 259 Best results are obtained with substrates of type (25). The (related) p-silyl ketones, which also constitute valuable building blocks for (acyclic) stereoselective synthesis, are now accessible in high ee via palladium-catalyzed enantioselective 1,4-disiiylation of a,p-unsaturated ketones (Scheme 76).260... [Pg.231]

The catalytic and chiral efficiency of (S,S)-le was also appreciated in the asymmetric synthesis of isoquinoline derivatives, which are important conformationally constrained a-amino acids. Treatment of 2 with a,a -dibromo-o-xylene under liquid-liquid phase-transfer conditions in the presence of (S,S)-le showed complete consumption ofthe starting Schiffbase. Imine hydrolysis and subsequent treatment with an excess amount of NaHCOs facilitated intramolecular ring closure to give 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid tert-butyl ester 38 in 82% yield with 98% ee. A variety of l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives possessing different aromatic substituents, such as 39 and 40, can be conveniently prepared in a similar manner, with excellent enantioselectivity (Scheme 5.20) [25]. [Pg.89]

Jew and Park achieved a highly enantioselective synthesis of (2S)-a-(hydroxy-methyljglutamic acid, a potent metabotropic receptor ligand, through the Michael addition of 2-naphthalen-l-yl-2-oxazoline-4-carboxylic acid tert-butyl ester 72 to ethyl acrylate under phase-transfer conditions [38]. As shown in Scheme 5.36, the use of BEMP as a base at —60 °C with the catalysis of N-spiro chiral quaternary ammonium bromide le appeared to be essential for attaining an excellent selectivity. [Pg.100]

An enantioselective Strecker reaction involving Brpnsted acid catalysis uses a BINOL-phosphoric acid, which affords ees up to 93% in hydrocyanations of aromatic aldimines in toluene at -40 °C.67 The asymmetric induction processes in the stereoselective synthesis of both optically active cis- and trans-l-amino-2-hydroxycyclohexane-l -carboxylic acids via a Strecker reaction have been investigated.68 A 2-pyridylsulfonyl group has been used as a novel stereocontroller in a Strecker-type process ees up to 94% are suggested to arise from the ability of a chiral Lewis acid to coordinate to one of the sulfonyl (g)... [Pg.10]

Besides the glycinate ester derivatives described above, other types of enolate-forming compounds have proved to be useful substrates for enantioselective alkylation reactions in the presence of cinchona alkaloids as chiral PTC catalysts. The Corey group reported the alkylation of enolizable carboxylic acid esters of type 57 in the presence of 25 as organocatalyst [69]. The alkylations furnished the desired a-substituted carboxylate 58 in yields of up to 83% and enantioselectivity up to 98% ee (Scheme 3.23). It should be added that high enantioselectivity in the range 94-98% ee was obtained with a broad variety of alkyl halides as alkylation agents. The product 58c is a versatile intermediate in the synthesis of an optically active tetra-hydropyran. [Pg.33]


See other pages where Carboxylic acids enantioselective synthesis is mentioned: [Pg.1286]    [Pg.669]    [Pg.162]    [Pg.1417]    [Pg.1335]    [Pg.194]    [Pg.190]    [Pg.447]    [Pg.230]    [Pg.248]    [Pg.4]    [Pg.35]    [Pg.35]    [Pg.854]    [Pg.182]    [Pg.284]    [Pg.125]    [Pg.798]    [Pg.336]    [Pg.353]    [Pg.165]    [Pg.1098]    [Pg.270]    [Pg.178]    [Pg.13]    [Pg.512]    [Pg.574]    [Pg.512]    [Pg.574]    [Pg.110]    [Pg.27]    [Pg.171]    [Pg.222]    [Pg.75]   
See also in sourсe #XX -- [ Pg.30 , Pg.36 , Pg.37 , Pg.38 ]

See also in sourсe #XX -- [ Pg.30 , Pg.36 , Pg.37 , Pg.38 ]

See also in sourсe #XX -- [ Pg.28 , Pg.39 ]




SEARCH



Carboxylate, synthesis

Carboxylic acids enantioselective

Carboxylic synthesis

Synthesis enantioselective

© 2024 chempedia.info