Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resonance stabilization carboxylic acids

ACIDITY OF CARBOXYLIC ACIDS Resonance Stabilization of the Carboxylate Ion Inductive Effect on Acidity Acidity of Aromatic Carboxylic Acids... [Pg.1227]

Base-mediated ester hydrolyses have a high driving force. This is because of the acid/base reaction between the carboxylic acid formed in the reaction, and the base used as the reagent. The resonance stabilization of the carboxylate is approximately 30 kcal/mol, which means a gain of about 16 kcal/mol compared to the starting material, the carboxylic ester (resonance stabilization 14 kcal/mol according to Table 6.1). Accordingly, the hydrolysis equilibrium lies completely on the side of the carboxylate. [Pg.288]

The experimental conditions for the carboxylation of allenyllithium are governed by the consideration that introduction of the COOLi group renders the allenic protons more acidic (resonance stabilization). If the normal order addition is used (introduction of C02 into the solution of allenyllithium), the allenic carboxylate primarily formed may easily be deprotonated by the strongly basic allenyllithium. The new species (either LiCH=C=CHCOOLi or H2C=C=C(Li)COOLi) may react also with C02. To avoid this situation the solution of allenyllithium is gradually added to a strongly cooled solution of carbon dioxide in THF. As usual, liberation of the acid occurs by adding mineral acid. In view of the possibility of an acid-catalyzed cyclization to a lactone too strongly acidic conditions should be avoided ... [Pg.62]

Competitive resonance effects can be found. In general, C-H bonds alpha to ketones are more acidic than when alpha to ester carbonyls, which are more acidic relative to amide carbonyls, all three of which are more acidic than C-H bonds near carboxylates. The resonance stabilization gained by ionization of the C-H bond is increasingly lower in this series because the O, N, or 0 heteroatom on the ester, amide, or carboxylate, respectively, is increasingly involved in resonance with the carbonyl in the acid prior to ionization of the C-H bond. In such cases, we must consider the role of resonance in stabilizing the HA compound as well as A". [Pg.282]

ANSWER Look at the final products of the two reactions. Reaction with hydroxide leads to a carboxylic acid (pA 4.5) and an alkoxide ion. These two species must react very rapidly to make the more stable carboxylate anion (resonance stabilized) and the alcohol (pA 17). The hydroxide reagent is consumed in this reaction, and the overall process is so thermodynamically favorable that it is irreversible in a practical sense. [Pg.897]

Unsymmetrically substituted dipyrromethanes are obtained from n-unsubstitued pyrroles and fl(-(bromomethyl)pyiToIes in hot acetic acid within a few minutes. These reaction conditions are relatively mild and the o-unsubstituted pyrrole may even bear an electron withdrawing carboxylic ester function. It is still sufficiently nucleophilic to substitute bromine or acetoxy groups on an a-pyrrolic methyl group. Hetero atoms in this position are extremely reactive leaving groups since the a-pyrrolylmethenium( = azafulvenium ) cation formed as an intermediate is highly resonance-stabilized. [Pg.254]

Another example of the effect of resonance is in the relative acidity of carboxylic acids as compared to alcohols. Carboxylic acids derived from saturated hydrocarbons have ipK values near 5, whereas saturated alcohols have pA values in the range 16-18. This implies that the carboxylate anion can accept negative charge more readily than an oxygen on a saturated carbon chain. This can be explained in terms of stabilization of the negative charge by resonance, ... [Pg.10]

There are large differences in reactivity among the various carboxylic acid derivatives, such as amides, esters, and acyl chlorides. One important factor is the resonance stabilization provided by the heteroatom. This decreases in the order N > O > Cl. Electron donation reduces the electrophilicity of the carbonyl group, and the corresponding stabilization is lost in the tetrahedral intermediate. [Pg.473]

In a first step, the carboxylic acid 1 is converted into the corresponding acyl chloride 2 by treatment with thionyl chloride or phosphorous trichloride. The acyl chloride is then treated with diazomethane to give the diazo ketone 3, which is stabilized by resonance, and hydrogen chloride ... [Pg.16]

The distinguishing characteristic of carboxylic acids is their acidity. Although weaker than mineral acids such as HC1, carboxylic acids dissociate much more readily than alcohols because the resultant carboxylate ions are stabilized by resonance between two equivalent forms. [Pg.774]

Carbonyl compounds are more acidic than alkanes for the same reason that carboxylic acids are more acidic than alcohols (Section 20.2). In both cases, the anions are stabilized by resonance. Enolate ions differ from carboxylate ions, however, in that their two resonance forms are not equivalent—the form with the negative charge on oxygen is lower in energy than the form with the charge on carbon. Nevertheless, the principle behind resonance stabilization is the same in both cases. [Pg.850]

An acetyl group in the 2-position favors the monocyclic structure presumably because of the resonance stabilization.12 The same observation was made with oxepin-2,7-dicarbaldehyde, oxepin-2,7-dicarboxylic acid, and oxepin-2,7-dicarbonitrile.23 Substituents in the 4- and 5-positions of the oxepin such as methyl or methoxycarbonyl groups shift the equilibrium towards the epoxide.12 24 Low temperature 1H NMR studies on 7-ethyloxepin-2-carbonitrile and ethyl 7-ethyloxepin-2-carboxylate established a nonplanar boat geometry with a ring-inversion harrier of 6.5 kcal mol-1.25... [Pg.2]

The reaction is less selective than the related benzoylation reaction (/pMe = 30.2, cf. 626), thereby indicating a greater charge on the electrophile this is in complete agreement with the greater ease of nuclophilic substitution of sulphonic acids and derivatives compared to carboxylic acids and derivatives and may be rationalized from a consideration of resonance structures. The effect of substituents on the reactivity of the sulphonyl chloride follows from the effect of stabilizing the aryl-sulphonium ion formed in the ionisation step (81) or from the effect on the preequilibrium step (79). [Pg.80]

Because of the resonance stabilization possible in its deprotonated form, the 5-tetrazolyl moiety is actually nearly as acidic (pKa ca. 6) as many carboxylic acids. This has led to its inclusion in many drug series as a carboxyl surrogate. Apparently related in concept to indomethacin (26a), intrazole (26) is a nonsteroidal antiinflammatory agent which also inhibits platelet aggregation, and therefore is of potential value in keeping the contents of the... [Pg.345]

In order to co clarify the role of complex formation, the new data on stability constants should be accumulated, being collected at strictly similar conditions. It should be also mentioned that any analysis of equilibrium in solutions involving anions of polybasic hydroxy carboxylic acids requires the data on the deprotonation constants of the acid in question. This information would be crucial for conclusions regarding the presence and stability of mixed complexes in the system. Valuable knowledge about the structure of complex compounds present in solutions (and in precursors as well, see later) may be gained by means of vibrational spectroscopy (IR and Raman spectra) and nuclear magnetic resonance. [Pg.505]

This is a consequence of delocalization, with resonance stabilization being possible when the carbonyl oxygen is protonated, but not possible should the OR oxygen become protonated. This additional resonance stabilization is not pertinent to aldehydes and ketones, which are thus less basic than the carboxylic acid derivatives. However, these oxygen derivatives are still very weak bases, and are only protonated in the presence of strong acids. [Pg.140]

Note that acids, and primary and secondary amides cannot be employed to generate enolate anions. With acids, the carboxylic acid group has pATa of about 3-5, so the carboxylic proton will be lost much more easily than the a-hydrogens. In primary and secondary amides, the N-H (pATa about 18) will be removed more readily than the a-hydrogens. Their acidity may be explained because of resonance stabilization of the anion. Tertiary amides might be used, however, since there are no other protons that are more acidic. [Pg.373]

Vitamin C, also known as L-ascorbic acid, clearly appears to be of carbohydrate nature. Its most obvious functional group is the lactone ring system, and, although termed ascorbic acid, it is certainly not a carboxylic acid. Nevertheless, it shows acidic properties, since it is an enol, in fact an enediol. It is easy to predict which enol hydroxyl group is going to ionize more readily. It must be the one P to the carbonyl, ionization of which produces a conjugate base that is nicely resonance stabilized (see Section 4.3.5). Indeed, note that these resonance forms correspond to those of an enolate anion derived from a 1,3-dicarbonyl compound (see Section 10.1). Ionization of the a-hydroxyl provides less favourable resonance, and the remaining hydroxyls are typical non-acidic alcohols (see Section 4.3.3). Thus, the of vitamin C is 4.0, and is comparable to that of a carboxylic acid. [Pg.490]

The reactivity of the carbonyl group is enhanced by resonance, which stabilizes the carboxylate ion (see Figure 9-16). This increased stability of the carboxylate ion means that it s easier for a hydrogen ion to leave the Ccirbox-ylic acid. Thus the resonance is one factor in accounting for the acidity of carboxylic acids. [Pg.130]

The reaction involves the transfer of an electron from the alkali metal to naphthalene. The radical nature of the anion-radical has been established from electron spin resonance spectroscopy and the carbanion nature by their reaction with carbon dioxide to form the carboxylic acid derivative. The equilibrium in Eq. 5-65 depends on the electron affinity of the hydrocarbon and the donor properties of the solvent. Biphenyl is less useful than naphthalene since its equilibrium is far less toward the anion-radical than for naphthalene. Anthracene is also less useful even though it easily forms the anion-radical. The anthracene anion-radical is too stable to initiate polymerization. Polar solvents are needed to stabilize the anion-radical, primarily via solvation of the cation. Sodium naphthalene is formed quantitatively in tetrahy-drofuran (THF), but dilution with hydrocarbons results in precipitation of sodium and regeneration of naphthalene. For the less electropositive alkaline-earth metals, an even more polar solent than THF [e.g., hexamethylphosphoramide (HMPA)] is needed. [Pg.414]


See other pages where Resonance stabilization carboxylic acids is mentioned: [Pg.819]    [Pg.819]    [Pg.556]    [Pg.278]    [Pg.886]    [Pg.343]    [Pg.10]    [Pg.16]    [Pg.216]    [Pg.756]    [Pg.439]    [Pg.61]    [Pg.535]    [Pg.58]    [Pg.331]    [Pg.184]    [Pg.103]    [Pg.27]    [Pg.52]    [Pg.141]    [Pg.144]    [Pg.274]    [Pg.235]    [Pg.637]    [Pg.647]    [Pg.309]   
See also in sourсe #XX -- [ Pg.702 ]

See also in sourсe #XX -- [ Pg.701 ]




SEARCH



Acid stabilization

Acids stability

Carboxylate resonance

Carboxylic acid derivatives resonance stabilization

Carboxylic acid stability

Carboxylic resonance stabilization

Resonance carboxylic acids

Resonance stabilization

Resonance-stabilized

Stabilizers acid

© 2024 chempedia.info