Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl enolizable

The ff-oxidation of carbonyl compounds may be performed by addition of molecular oxygen to enolate anions and subsequent reduction of the hydroperoxy group, e.g. with triethyl phosphite (E.J. Bailey, 1962 J.N. Gardner, 1968 A,B). If the initially formed a-hydroperoxide possesses another enolizable a-proton, dehydration to the 1,2-dione occurs spontaneously, and further oxidation to complex product mitctures is usually observed. [Pg.121]

In mordant dyes, phenols, naphthols, and enolizable carbonyl compounds, such as pyrazolones, are generally the couplers. As a rule, 2 1 metal complexes are formed ia the afterchroming process. A typical example of a mordant dye is Eriochrome Black T (18b) which is made from the important dyestuff iatermediate nitro-l,2,4-acid, 4-amiQO-3-hydroxy-7-nitro-l-naphthalenesulfonic acid [6259-63-8]. Eriochrome Red B [3618-63-1] (49) (Cl Mordant Red 7 Cl 18760) (1, 2,4-acid — l-phenyl-3-methyl-5-pyrazolone) is another example. The equiUbrium of the two tautomeric forms depends on the nature of the solvent. [Pg.437]

A-/-Butyldimethylsilyl-7V-methyltrifluoroacetamide, CH3CN, 5 min, 97-100% yield.This reagent also silylates thiols, amines, amides, carboxylic acids, and enolizable carbonyl groups. [Pg.78]

As one might expect, most of the reported cases of Camps quinoline syntheses involve reactions in which only one of the carbonyl groups is enolizable, thus eliminating the regioselectivity problem. [Pg.387]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

The reaction can be performed with base catalysis as well as acid catalysis. The former is more common here the enolizable carbonyl compound 1 is depro-tonated at the a-carbon by base (e.g. alkali hydroxide) to give the enolate anion 5, which is stabilized by resonance ... [Pg.4]

Since various substituents are tolerated, the Friedlander reaction is of preparative value for the synthesis of a large variety of quinoline derivatives. The benzene ring may bear for example alkyl, alkoxy, nitro or halogen substituents. Substituents R, R and R" also are variable. The reaction can be carried out with various carbonyl compounds, that contain an enolizable a-methylene group. The reactivity of that group is an important factor for a successful reaction. [Pg.125]

The enolate anion 1 may in principle be generated from any enolizable carbonyl compound 4 by treatment with base the reaction works especially well with /3-dicarbonyl compounds. The enolate 1 adds to the a ,/3-unsaturated compound 2 to give an intermediate new enolate 5, which yields the 1,5-dicarbonyl compound 3 upon hydrolytic workup ... [Pg.201]

The Barbier-type modification17, in which the allyl Grignard reagent is produced in the presence of a carbonyl compound, seems not to be suitable for enolizable aldehydes. Some... [Pg.252]

In azo couplings with carbonyl compounds, three tautomeric products are possible, compared with only two for phenols and aromatic amines (discussed in Section 12.1). The ketohydrazone 12.75 is most often dominant, but for easily enolizable 1,3-dicarbonyl compounds (X=CO-R and similar structures) the azoenol 12.76 is the major product. The azoketone 12.77 is often postulated as primary product, but has rarely been identified in an unambiguous fashion using modern methods. The CH2 group should be easily detectable in the lH NMR spectrum. [Pg.334]

Corey and Chaykovsky were the first to investigate the reaction of dimethyl sulphoxide anion (dimsyl anion) with aldehydes and ketones400,401. They found that the reaction with non-enolizable carbonyl compounds results in the formation of /1-hydroxyalkyl sulphoxides in good yields (e.g. Ph2CO—86%, PhCHO—50%). However, with enolizable carbonyl compounds, particularly with cycloalkanones, poor yields of hydroxyalkyl products are observed (e.g. camphor—28%, cyclohexanone—17%, but... [Pg.322]

In the presence of a catalytic amount of triethylamine, a readily enolizable carbonyl compound like acetylacetone (25) can undergo a Michael-type addition onto the triple bond of 23 with C-C bond formation, and subsequent 1,2-addition of the hydroxy group with elimination of an alcohol (MeOH or EtOH) to eventually yield a pyranylidene complex 28 (mode E) [29]. The most versatile access to / -donor-substituted ethenylcarbene complexes 27 is by Michael-type additions of nucleophiles, including alcohols [30-32], primary... [Pg.25]

Allyl vinyl ethers have been prepared using the ylide (101) but only from non-enolizable carbonyl compounds. The ethers rearrange on heating to give a-allyl aldehydes, e.g. (102). [Pg.167]

The Mannich reaction is the condensation of an enolizable carbonyl compound with an iminium ion.180 It is usually done using formaldehyde and introduces an a-dialkylaminomethyl substituent. [Pg.140]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

Mannich and related readions provide one of the most fundamental and useful methods for the synthesis of p-amino carbonyl compounds, which constitute various pharmaceuticals, natural products, and versatile synthetic intermediates.1271 Conventional protocols for three-component Mannich-type readions of aldehydes, amines, and ketones in organic solvents indude some severe side reactions and have some substrate limitations, espedally for enolizable aliphatic aldehydes. The dired synthesis of P-amino ketones from aldehydes, amines, and silyl enolates under mild conditions is desirable from a synthetic point of view. Our working hypothesis was that aldehydes could read with amines in a hydro-phobic reaction fidd created in water in the presence of a catalytic amount of a metal triflate and a surfactant to produce imines, which could then read with hydrophobic silyl enolates. [Pg.10]

More recently, reports by Quayle and co-workers, have shown that benzylated 2-chloroglucal derivatives can be lithiated, with. vec-butyllithium in THF at -78 °C, and the ensuing lithiated species trapped with a variety of carbon electrophiles that include enolizable carbonyl derivatives.25 4-Cholesten-2-one underwent 1,2-addition to yield a 5 1 mixture... [Pg.291]

The addition of carbonyl compounds towards lithiated 1-siloxy-substituted allenes does not proceed in the manner described above for alkoxyallenes. Tius and co-work-ers found that treatment of 1-siloxy-substituted allene 67 with tert-butyllithium and subsequent addition of aldehydes or ketones led to the formation of ,/i-unsaturated acyl silanes 70 (Scheme 8.19) [66]. This simple and convenient method starts with the usual lithiation of allene 67 at C-l but is followed by a migration of the silyl group from oxygen to C-l, thus forming the lithium enolate 69, which finally adds to the carbonyl species. Transmetalation of the lithiated intermediate 69 to the corresponding zinc enolate provided better access to acylsilanes derived from enolizable aldehydes. For reactions of 69 with ketones, transmetalation to a magnesium species seems to afford optimal results. [Pg.436]

The oxidative carbonylation reaction of enolizable ketones follows the general routes already illustrated for simple alkenes. Thus, a-methoxycarbonyl-ation may occur either by addition of a Cl - Pd - C02Me species to the enolic... [Pg.254]

Trimethylsilylation of enolizable carbonyl compounds and alcohols has also been accomplished by the fluoride ion promoted reaction with hexamethyldisilane and ethyl trimethylsilylacetate [48, 49], with high stereospecificity giving Z-enol ethers from ketones [50]. l-Trimethylsilyl-(l-trimethylsilyloxy)alkanes, produced from the reaction of aldehydes with hexamethyldisilane, undergo acid-catalysed hydrolysis during work up to yield the trimethylsilylcarbinols [51]. In the case of aryl aldehydes, the initially formed trimethylsiloxy carbanion produces the pinacol (Scheme 3.1). [Pg.77]

Base-induced cleavage of non-enolizable ketones leading to carboxylic amide derivative and a neutral fragment in which the carbonyl group is replaced by a hydrogen. [Pg.279]


See other pages where Carbonyl enolizable is mentioned: [Pg.204]    [Pg.72]    [Pg.731]    [Pg.637]    [Pg.96]    [Pg.637]    [Pg.53]    [Pg.72]    [Pg.331]    [Pg.240]    [Pg.25]    [Pg.192]    [Pg.322]    [Pg.372]    [Pg.174]    [Pg.83]    [Pg.85]    [Pg.86]    [Pg.90]    [Pg.96]    [Pg.644]    [Pg.487]    [Pg.72]    [Pg.180]    [Pg.186]    [Pg.1008]   
See also in sourсe #XX -- [ Pg.1360 ]




SEARCH



Carbonylation of Enolizable Ketones (Enol Triflates) and lodoalkenes

Enolizable

Enolizable Carbonyl Compounds the Haloform Reaction

Enolizable carbonyl compounds

Non-enolizable carbonyl

Non-enolizable carbonyl compound

© 2024 chempedia.info