Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds reaction with nitriles

The comparatively ready accessibility of selenocarboxamides has encouraged the use of this procedure for the synthesis of selenazoles (1889LA(250)294). Reaction of the a-chloro-carbonyl compound (73) with the selenocarboxamide (74) provided a ready synthesis of a variety of substituted selenazoles (75). Useful variations of this general procedure are described in detail in Chapter 4.20, and particularly attractive is the reaction of hydrogen selenide with a mixture of a nitrile and the a-halogenoketone to afford the selenazole (48YZ191, 79S66). [Pg.118]

A second category of silene reactions involves interactions with tt-bonded reagents which may include homonuclear species such as 1,3-dienes, alkynes, alkenes, and azo compounds as well as heteronuclear reagents such as carbonyl compounds, imines, and nitriles. Four modes of reaction have been observed nominal [2 + 2] cycloaddition (thermally forbidden on the basis of orbital symmetry considerations), [2 + 4] cycloadditions accompanied in some cases by the products of apparent ene reactions (both thermally allowed), and some cases of (allowed) 1,3-dipolar cycloadditions. [Pg.28]

As reported before (see Section 4.14.6.1, Scheme 19), thermolysis of oxathiazolines (169) proceeds via a retro 1,3-dipolar cycloaddition to produce the carbonyl compound and the nitrile sulfide intermediate. Trapping reactions have been carried out with DMAD, ECF (ethyl cyano formate), and benzonitrile to give respectively isothiazoles (170) and thiadiazoles (171) and (172). However in two particular cases (R = 4-MeOC6H4, 4-ClCgH4, thermolysis in the presence of benzonitrile gives (172) and the thiadiazole (173) in very low yields. It has been suggested that the latter arises... [Pg.523]

Formation of cyclopropylamines and cyclopropanols from alkylmagnesium halides and esters, amides, or nitriles, catalyzed by titanium alcoholates, was discovered by Kulinkovich in 1989. The reaction mechanism includes the formation of dialkoxytitanacyclopropanes, which reacts with a carbonyl compound or a nitrile (Scheme 109). [Pg.71]

Starting with the knowledge of carbenium ion stability and the understanding that it is necessary to decrease this stability enabling the reaction of these ions with nitriles102 (Section III.B.l), it should be assumed that acetals 209, oc-haloethers 211, enols 217 and vinyl ethers 218 are ineffective precursors since they are the sources of the highly stable hydroxy- (223) and alkoxycarbenium ions 224. In contrast, the carbonyl compound derivatives, which can produce destabilized ions (in comparison to ions 223 and 224) are the most interesting for reactions with nitriles. This includes acyloxycarbocations 225 (see Section III.B.3), halocarbocations 226, A-acyliminium ions 228 and vinyl cations 229. [Pg.1475]

Many organometallic zinc species are too unreactive to undergo cross-coupling reactions with carbon nucleophiles. This general statement cannot be applied to allylic organometallic species which smoothly react with several electrophiles, such as carbonyl compounds [35,36], nitriles [37,38], or triple bonds [39] (Scheme 9-10). [Pg.477]

Schmidt Reaction.54 Closely related to the Curtins reaction in its mechanism is the Schmidt reaction, whereby carbonyl compounds react with hydrazoic acid in acid solution to give rearranged products. Amines, amides, nitriles, and tetrazoles are the most common substances obtained from the reaction. [Pg.65]

The methods for generating acyl ketenes (Scheme 7-V) and their subsequent in situ participation in [4 + 2] cycloadditions with a wide range of hetero- or olefinic and acetylenic dienophiles (Scheme 7-VI), including acyl ketenes,185 186,197 carbonyl compounds, 86-188 nitriles,1874,189,191 isocyanates and isothiocyanates,1864,190,191 ketenes,191 imines,1864,1874,191,192 carbo-diimides,l87c 190,191,193 ynamines,194 ketene acetals,1864,195 enol ethers,1864,191,196 and V-sulfinylamines197 have been extensively reviewed.5,9,12 Two reports have detailed the 4-n- participation of allenic ketones in [4 + 2] cycloaddition reactions [Eq. (51)].198,199... [Pg.106]

Hi) Reactions with carbonyl compounds and aromatic nitriles... [Pg.918]

The reactivity of molybdenum carbonyls in reaction with Lewis acids is comparable to the reactivity of tungsten carbonyls. The treatment of a nitrile carbonyl compound with an equimolar amount of tetrachlorotin in dichloromethane gives the oxidative-addition product, a mononuclear seven-coordinate compound [MoCl(SnCl3)(CO)3(NCMe)2], in good yield [36, 40]. The same compound was isolated from the reaction of a binuclear compound and acetonitrile. The crystal structure of the reaction product is similar to that... [Pg.352]

Fluoromethylidyne and Difluoromethylidene. Bismethylidyne complexes of iron are themselves somewhat rare. For example, when Lentz and co-workers first prepared nonacarbonylbis( i3-fluoromethylidyne)triiron, [Fe3(CO)9( X3-CF)2] (137), it was only the second known compound to contain the Fe3(CR)2 moiety. Since then, Lentz has extended the chemistry of this compound by studying (1) its reactions with alkynes (138-140), a phosphaalkyne (140,141), and Lewis acids (140,142), (2) its carbonyl substitution chemistry with nitriles and phosphines (143),... [Pg.7]

The reaction of phosphorus pentasulfide with a-acylamino carbonyl compounds of type Ilia also yields thiazoles. Even more commonly, a mercaptoketone is condensed with a nitrile of type IVa or a-mercaptoacids or their esters with Schiff bases. This ring closure is limited to the thiazolidines. In the Va ring-closure type, /3-mercaptoalkylamines serve as the principal starting materials, and ethylformate is the reactant that supplies the carbon at the 2-position of the ring. These syntheses constitute the most important route for the preparation of many thiazolidines and 2-thiazohnes. In the Vb t3fpe of synthesis, one of the reactant supplies only the carbon at the 5-position of the resultant thiazole. Then in these latter years new modern synthetic methods of thiazole ring have been developed (see Section 7 also Refs. 515, 758, 807, 812, 822). [Pg.168]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

The protonated azirine system has also been utilized for the synthesis of heterocyclic compounds (67JA44S6). Thus, treatment of (199) with anhydrous perchloric acid and acetone or acetonitrile gave the oxazolinium perchlorate (207) and the imidazolinium perchlorate (209), respectively. The mechanism of these reactions involves 1,3-bond cleavage of the protonated azirine and reaction with the carbonyl group (or nitrile) to produce a resonance-stabilized carbonium-oxonium ion (or carbonium-nitrilium ion), followed by attack of the nitrogen unshared pair jf electrons to complete the cyclization. [Pg.69]

Enamines react with acceptor-substituted alkenes (Michael acceptors) in a conjugate addition reaction for example with o ,/3-unsaturated carbonyl compounds or nitriles such as acrylonitrile 8. With respect to the acceptor-substituted alkene the reaction is similar to a Michael addition ... [Pg.268]

Nitriles are similar in some respects to carboxylic acids and are prepared either by SN2 reaction of an alkyl halide with cyanide ion or by dehydration of an amide. Nitriles undergo nucleophilic addition to the polar C=N bond in the same way that carbonyl compounds do. The most important reactions of nitriles are their hydrolysis to carboxylic acids, reduction to primary amines, and reaction with organometallic reagents to yield ketones. [Pg.774]

Many types of carbonyl compounds, including aldehydes, ketones, esters, thioesters, acids, and amides, can be converted into enolate ions by reaction with LDA. Table 22.1 lists the approximate pKa values of different types of carbonyl compounds and shows how these values compare to other acidic substances we ve seen. Note that nitriles, too, are acidic and can be converted into enolate-like anions. [Pg.851]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

The Michael reaction occurs with a variety of a,/3-unsaturated carbonyl compounds, not just conjugated ketones. Unsaturated aldehydes, esters, thio-esters, nitriles, amides, and nitro compounds can all act as the electrophilic acceptor component in Michael reactions (Table 23.1). Similarly, a variety of different donors can be used, including /3-diketones, /3-keto esters, malonic esters, /3-keto nitriles, and nitro compounds. [Pg.894]


See other pages where Carbonyl compounds reaction with nitriles is mentioned: [Pg.95]    [Pg.925]    [Pg.3]    [Pg.548]    [Pg.557]    [Pg.41]    [Pg.925]    [Pg.1491]    [Pg.1913]    [Pg.499]    [Pg.4]    [Pg.906]    [Pg.216]    [Pg.262]    [Pg.229]    [Pg.213]    [Pg.142]    [Pg.27]    [Pg.111]    [Pg.1205]    [Pg.12]   
See also in sourсe #XX -- [ Pg.401 ]

See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Carbonyl compounds nitriles

Carbonyl compounds, reactions

Nitrile compounds

Nitriles reactions

Nitriles with carbonyls

Reaction with carbonyl compounds

Reaction with nitriles

With Carbonyl Compounds

© 2024 chempedia.info