Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonaceous formation

Percentage of meteorites seen to fall. Chondrites. Over 90% of meteorites that are observed to fall out of the sky are classified as chondrites, samples that are distinguished from terrestrial rocks in many ways (3). One of the most fundamental is age. Like most meteorites, chondrites have formation ages close to 4.55 Gyr. Elemental composition is also a property that distinguishes chondrites from all other terrestrial and extraterrestrial samples. Chondrites basically have undifferentiated elemental compositions for most nonvolatile elements and match solar abundances except for moderately volatile elements. The most compositionaHy primitive chondrites are members of the type 1 carbonaceous (Cl) class. The analyses of the small number of existing samples of this rare class most closely match estimates of solar compositions (5) and in fact are primary source solar or cosmic abundances data for the elements that cannot be accurately determined by analysis of lines in the solar spectmm (Table 2). Table 2. Solar System Abundances of the Elements ... [Pg.96]

D. M. Riggs, The Characterisation andKinetic Mechanism of Mesophase Formation in High Molecular Weight Carbonaceous Materials, Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, N.Y., 1979. [Pg.8]

Furthermore, the restrictions on operating voltage that apply to titanium in a marine enviroment are not always relevant to titanium in soils free of chloride contamination. Coke breeze is, however, an integral part of the groundbed construction and ensures a lower platinum consumption rate. However, for some borehole groundbeds, platinised niobium is preferred, particularly in the absence of carbonaceous backfill or in situations where the water chemistry within a borehole can be complex and may, in certain circumstances, contain contaminants which favour breakdown of the anodic Ti02 film on titanium. In particular, the pH of a chloride solution in a confined space will tend to decrease owing to the formation of HOCl and HCl, and this will result in an increase in the corrosion rate of the platinum. [Pg.169]

The anode tends to give rise to a high resistance polarisation due to the formation of a voluminous corrosion product, particularly when buried as opposed to immersed. This can be alleviated by closely surrounding the scrap with carbonaceous backfill this of course increases the cost if the backfill is not also a local by-product. It is necessary under conditions of burial to ensure compactness and homogeneity of backfill (earth or carbon) at all areas on the steel, otherwise particularly rapid loss of metal at the better compacted areas could lead to decimation of the groundbed capacity. [Pg.174]

Kinetic stability of lithium and the lithiated carbons results from film formation which yields protective layers on lithium or on the surfaces of carbonaceous materials, able to conduct lithium ions and to prevent the electrolyte from continuously being reduced film formation at the Li/PC interphase by the reductive decomposition of PC or EC/DMC yielding alkyl-carbonates passivates lithium, in contrast to the situation with DEC where lithium is dissolved to form lithium ethylcarbonate [149]. EMC is superior to DMC as a single solvent, due to better surface film properties at the carbon electrode [151]. However, the quality of films can be increased further by using the mixed solvent EMC/EC, in contrast to the recently proposed solvent methyl propyl carbonate (MPC) which may be used as a single sol-... [Pg.479]

An important example of the first type is the oil smoke pot which is powered by a slow burning, gassy pyrotechnic mixt such as amm nitrate and amm chloride with a small amount of carbonaceous fuel. The resulting gas jet pulls a stream of oil from a reservoir and injects it into a venturi where the formation of the aerosol takes place... [Pg.984]

The a—time curves for the oxidation reactions [60] of both nickel maleate (534—568 K) and nickel fumarate (548—583 K) were similar to those characteristic of each reactant in vacuum, though E values were reduced to 150 10 kJ mole-1. It was concluded that the distributions of nucleation sites and subsequent patterns of product development were little altered by the change in composition of product from Ni/C (and Ni3C) to NiO. This difference, however, significantly changed the temperature coefficient and stoichiometry of the interface processes, since all carbonaceous material in the reactants was converted to CO2. A constant value of E (150 kJ mole-1) was thus found for the oxidations of the four nickel salts studied [60], the maleate, fumarate, formate and malonate. [Pg.227]

Real reasons due to (a) the occurance of very fast (and therefore in most cases diffusion controlled) catalytic reactions on the electrode surface, (b) Formation of non-conducting carbonaceous or oxidic layers on the catalyst electrode surface. [Pg.226]

An interesting way to retard catalyst deactivation is to expose the reaction mixture to ultrasound. Ultrasound treatment of the mixture creates local hot spots, which lead to the formation of cavitation bubbles. These cavitation bubbles bombard the solid, dirty surface leading to the removal of carbonaceous deposits [38]. The ultrasound source can be inside the reactor vessel (ultrasound stick) or ultrasound generators can be placed in contact with the wall of the reactor. Both designs work in practice, and the catalyst lifetime can be essentially prolonged, leading to process intensification. The effects of ultrasound are discussed in detail in a review article [39]. [Pg.169]


See other pages where Carbonaceous formation is mentioned: [Pg.209]    [Pg.209]    [Pg.95]    [Pg.98]    [Pg.485]    [Pg.217]    [Pg.321]    [Pg.385]    [Pg.522]    [Pg.522]    [Pg.211]    [Pg.24]    [Pg.13]    [Pg.119]    [Pg.849]    [Pg.1032]    [Pg.234]    [Pg.393]    [Pg.398]    [Pg.422]    [Pg.422]    [Pg.429]    [Pg.429]    [Pg.431]    [Pg.433]    [Pg.435]    [Pg.437]    [Pg.439]    [Pg.441]    [Pg.606]    [Pg.122]    [Pg.78]    [Pg.19]    [Pg.23]    [Pg.184]    [Pg.560]    [Pg.446]    [Pg.159]    [Pg.165]    [Pg.80]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Carbonaceous

SEI Formation on Carbonaceous Electrodes

The Formation, Structure, and Function of Carbonaceous Deposits

© 2024 chempedia.info