Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon partial pressure

Benzene vapor adsorbed, cm3 (STP)/g carbon Partial pressure benzene, mmHg... [Pg.211]

Benzene vapor adsorbed kg benzene/100 kg carbon Partial pressure benzene, kPa... [Pg.212]

The corrosion rate of steel in carbonic acid is faster than in hydrochloric acid Correlations are available to predict the rate of steel corrosion for different partial pressures of CO2 and different temperatures. At high temperatures the iron carbonate forms a film of protective scale on the steel s surface, but this is easily washed away at lower temperatures (again a corrosion nomogram is available to predict the impact of the scale on the corrosion rate at various CO2 partial pressures and temperatures). [Pg.94]

Because of the relative instabiUty of FeO, the reduction to metallic Fe occurs at a much lower temperature and appreciable CO2 is present in the product gas. The high temperature required for the reaction of MnO and C results in the formation of essentially pure CO the partial pressures of CO2 and Mn are <0.1 kPa (1 X 10 atm). The product of this reaction is manganese carbide (7 3) [12076-37-8J, Mn C, containing 8.56% carbon. Assuming immiscibility of the metal and carbide, Mn should be obtainable by the reaction of MnO and Mn C at 1607°C. However, at this temperature and activity of Mn, the partial pressure of Mn vapor is approximately 10 kPa (0.1 atm) which would lead to large manganese losses. [Pg.490]

The relationship between the gas composition, austenite carbon content, and temperature is known. For example, a gas in equiUbrium with austenite containing 0.8% C must have the partial pressure ratio / Pco ) comprised of only CO and CO2, then the sum of the partial... [Pg.213]

The rate of hydroformylation increases with increasing hydrogen and decreases with increasing carbon monoxide partial pressures (9), suggesting that rates of hydroformylation would be satisfactory at high H2 and low CO partial pressures. In industrial practice, however, high pressures of both H2 and CO ate required in order to stabilize the HCo(CO)4 catalyst at the temperatures necessary for practical rates (10). Commercial processes, for example, operate at >24 MPa (3480 psi) and >140 C. [Pg.466]

Carbon monoxide (qv), eg, by-product CO from phosphoms manufacture or extracted from synthesis gas, is freed of acidic gases and absorbed in 50—80 wt % KOH at 100—200°C at a partial pressure of Pqq > Pa (>100 psi). The reaction is fairly slow. [Pg.533]

The choice of a specific CO2 removal system depends on the overall ammonia plant design and process integration. Important considerations include CO2 sHp required, CO2 partial pressure in the synthesis gas, presence or lack of sulfur, process energy demands, investment cost, availabiUty of solvent, and CO2 recovery requirements. Carbon dioxide is normally recovered for use in the manufacture of urea, in the carbonated beverage industry, or for enhanced oil recovery by miscible flooding. [Pg.349]

The effect of plasticizers and temperature on the permeabiUty of small molecules in a typical vinyUdene chloride copolymer has been studied thoroughly. The oxygen permeabiUty doubles with the addition of about 1.7 parts per hundred resin (phr) of common plasticizers, or a temperature increase of 8°C (91). The effects of temperature and plasticizer on the permeabiUty are shown in Figure 4. The moisture (water) vapor transmission rate (MVTR or WVTR) doubles with the addition of about 3.5 phr of common plasticizers (92). The dependence of the WVTR on temperature is a Htde more comphcated. WVTR is commonly reported at a constant difference in relative humidity and not at a constant partial pressure difference. WVTR is a mixed term that increases with increasing temperature because both the fundamental permeabiUty and the fundamental partial pressure at constant relative humidity increase. Carbon dioxide permeabiUty doubles with the addition of about 1.8 phr of common plasticizers, or a temperature increase of 7°C (93). [Pg.435]

In an oversimplified way, it may be stated that acids of the volcanoes have reacted with the bases of the rocks the compositions of the ocean (which is at the fkst end pokit (pH = 8) of the titration of a strong acid with a carbonate) and the atmosphere (which with its 2 = 10 atm atm is nearly ki equdibrium with the ocean) reflect the proton balance of reaction 1. Oxidation and reduction are accompanied by proton release and proton consumption, respectively. In order to maintain charge balance, the production of electrons, e, must eventually be balanced by the production of. The redox potential of the steady-state system is given by the partial pressure of oxygen (0.2 atm). Furthermore, the dissolution of rocks and the precipitation of minerals are accompanied by consumption and release, respectively. [Pg.212]

SolubiHty of carbon dioxide in ethanolamines is affected by temperature, amine solution strength, and carbon dioxide partial pressure. Information on the performance of amines is available in the Hterature and from amine manufacturers. Values for the solubiHty of carbon dioxide and hydrogen sulfide mixtures in monoethanolamine and for the solubiHty of carbon dioxide in diethanolamine are given (36,37). SolubiHty of carbon dioxide in monoethanolamine is provided (38). The effects of catalysts have been studied to improve the activity of amines and provide absorption data for carbon dioxide in both mono- and diethanolamine solutions with and without sodium arsenite as a catalyst (39). Absorption kinetics over a range of contact times for carbon dioxide in monoethanolamine have also been investigated (40). [Pg.22]

Carbon disulfide is completely miscible with many hydrocarbons, alcohols, and chlorinated hydrocarbons (9,13). Phosphoms (14) and sulfur are very soluble in carbon disulfide. Sulfur reaches a maximum solubiUty of 63% S at the 60°C atmospheric boiling point of the solution (15). SolubiUty data for carbon disulfide in Hquid sulfur at a CS2 partial pressure of 101 kPa (1 atm) and a phase diagram for the sulfur—carbon disulfide system have been published (16). Vapor—Hquid equiHbrium and freezing point data ate available for several binary mixtures containing carbon disulfide (9). [Pg.27]

TABLE 2-25 Partial Pressures of H O over Aqueous Solutions of Sodium Carbonate... [Pg.133]

Carbon Dioxide The contribution to the emissivity of a gas containing CO9 depends on gas temperature Tc, on the CO9 partial pressure-beam length product p L and, to a much lesser extent, on the total pressure P. Constants for use in evaluating at a total pressure of 101.3 kPa (1 atm) are given in Table 5-8 (more on this later). The gas absorptivity Ot equals the emissivity when the absorbing gas and the emitter are at the same temperature. When the emitter surface temperature is Ti, Ot is (Tc/Ti)° times , evaluated using Table 5-8 at T instead of Tc and at p LTi/Tc instead of Line broadening, due to... [Pg.579]

FIG. 25-8 Eqi lilibriiim partial pressures for certain organics on carbon. [Pg.2187]

At elevated pressure, the partial pressure of carbon dioxide inhibits calcination, and siilfur dioxide is captured by displacement of the carbonate radical. The overall effect is similar except, as no free hme is formed, the resulting sorbent ash is less alkahne, consisting solely of CaS04 and CaC03. [Pg.2387]


See other pages where Carbon partial pressure is mentioned: [Pg.238]    [Pg.33]    [Pg.238]    [Pg.33]    [Pg.359]    [Pg.39]    [Pg.494]    [Pg.4]    [Pg.77]    [Pg.15]    [Pg.437]    [Pg.341]    [Pg.342]    [Pg.213]    [Pg.489]    [Pg.95]    [Pg.346]    [Pg.349]    [Pg.43]    [Pg.369]    [Pg.539]    [Pg.340]    [Pg.38]    [Pg.394]    [Pg.21]    [Pg.22]    [Pg.22]    [Pg.22]    [Pg.55]    [Pg.211]    [Pg.211]    [Pg.113]    [Pg.522]    [Pg.2227]    [Pg.2419]    [Pg.24]    [Pg.94]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Carbon dioxide calculated partial pressures

Carbon dioxide liquid phase partial pressure

Carbon dioxide partial pressure

Carbon monoxide partial pressure, inhibition

Partial pressure

Partial pressure of carbon dioxide

Partial pressure of carbon dioxide in arterial

Partial pressure of carbon monoxide

Partial pressures of oxygen and carbon dioxide

© 2024 chempedia.info