Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon oxidizing agents

In the presence of strong oxidizing agents at elevated temperatures oxidation of tertiary alcohols leads to cleavage of the various carbon-carbon bonds at the hydroxyl bearing carbon atom and a complex mixture of products results... [Pg.642]

Alkali metals Moisture, acetylene, metal halides, ammonium salts, oxygen and oxidizing agents, halogens, carbon tetrachloride, carbon, carbon dioxide, carbon disul-flde, chloroform, chlorinated hydrocarbons, ethylene oxide, boric acid, sulfur, tellurium... [Pg.1207]

Carbon, activated Calcium hypochlorite, all oxidizing agents, unsaturated oils... [Pg.1207]

The high fluorine content contributes to resistance to attack by essentially all chemicals and oxidizing agents however, PCTFE does swell slightly ia halogenated compounds, ethers, esters, and selected aromatic solvents. Specific solvents should be tested. PCTFE has the lowest water-vapor transmission rate of any plastic (14,15), is impermeable to gases (see also Barrierpolymers), and does not carbonize or support combustion. [Pg.393]

The quantitative conversion of thiosulfate to tetrathionate is unique with iodine. Other oxidant agents tend to carry the oxidation further to sulfate ion or to a mixture of tetrathionate and sulfate ions. Thiosulfate titration of iodine is best performed in neutral or slightly acidic solutions. If strongly acidic solutions must be titrated, air oxidation of the excess of iodide must be prevented by blanketing the solution with an inert gas, such as carbon dioxide or... [Pg.364]

Oxidation. Ketones are oxidized with powerful oxidizing agents such as chromic or nitric acid. During oxidation, carbon—carbon bond cleavage occurs to produce carboxyHc acids. Ketone oxidation with hydrogen peroxide, or prolonged exposure to air and heat, can produce peroxides. Concentrated solutions of ketone peroxides (>30%) may explode, but dilute solutions are useful in curing unsaturated polyester resin mixtures (see... [Pg.487]

PMMA is not affected by most inorganic solutions, mineral oils, animal oils, low concentrations of alcohols paraffins, olefins, amines, alkyl monohahdes and ahphatic hydrocarbons and higher esters, ie, >10 carbon atoms. However, PMMA is attacked by lower esters, eg, ethyl acetate, isopropyl acetate aromatic hydrocarbons, eg, benzene, toluene, xylene phenols, eg, cresol, carboHc acid aryl hahdes, eg, chlorobenzene, bromobenzene ahphatic acids, eg, butyric acid, acetic acid alkyl polyhaHdes, eg, ethylene dichloride, methylene chloride high concentrations of alcohols, eg, methanol, ethanol 2-propanol and high concentrations of alkahes and oxidizing agents. [Pg.262]

If tin and sulfur are heated, a vigorous reaction takes place with the formation of tin sulfides. At 100—400°C, hydrogen sulfide reacts with tin, forming stannous sulfide however, at ordinary temperatures no reaction occurs. Stannous sulfide also forms from the reaction of tin with an aqueous solution of sulfur dioxide. Molten tin reacts with phosphoms, forming a phosphide. Aqueous solutions of the hydroxides and carbonates of sodium and potassium, especially when warm, attack tin. Stannates are produced by the action of strong sodium hydroxide and potassium hydroxide solutions on tin. Oxidizing agents, eg, sodium or potassium nitrate or nitrite, are used to prevent the formation of stannites and to promote the reactions. [Pg.64]

Oxidation. Benzene can be oxidized to a number of different products. Strong oxidizing agents such as permanganate or dichromate oxidize benzene to carbon dioxide and water under rigorous conditions. Benzene can be selectively oxidized in the vapor phase to maleic anhydride. The reaction occurs in the presence of air with a promoted vanadium pentoxide catalyst (11). Prior to 1986, this process provided most of the world s maleic anhydride [108-31 -6] C4H2O2. Currendy maleic anhydride is manufactured from the air oxidation of / -butane also employing a vanadium pentoxide catalyst. [Pg.39]

Thermodynamic calculations for reactions forming carbon disulfide from the elements are compHcated by the existence of several known molecular species of sulfur vapor (23,24). Thermochemical data have been reported (12). Although carbon disulfide is thermodynamically unstable at room temperature, the equiHbtium constant of formation increases with temperature and reaches a maximum corresponding to 91% conversion to carbon disulfide at about 700°C. Carbon disulfide decomposes extremely slowly at room temperature in the absence of oxidizing agents. [Pg.27]

Oxidation. Citric acid is easily oxidized by a variety of oxidizing agents such as peroxides, hypochlorite, persulfate, permanganate, periodate, hypobromite, chromate, manganese dioxide, and nitric acid. The products of oxidation are usually acetonedicarboxyhc acid (5), oxaUc acid (6), carbon dioxide, and water, depending on the conditions used (5). [Pg.180]


See other pages where Carbon oxidizing agents is mentioned: [Pg.91]    [Pg.5498]    [Pg.91]    [Pg.5498]    [Pg.95]    [Pg.98]    [Pg.254]    [Pg.28]    [Pg.293]    [Pg.20]    [Pg.364]    [Pg.685]    [Pg.23]    [Pg.200]    [Pg.298]    [Pg.125]    [Pg.275]    [Pg.308]    [Pg.380]    [Pg.35]    [Pg.98]    [Pg.398]    [Pg.210]    [Pg.102]    [Pg.110]    [Pg.394]    [Pg.572]    [Pg.371]    [Pg.432]    [Pg.457]    [Pg.166]    [Pg.942]    [Pg.2210]    [Pg.373]    [Pg.360]    [Pg.181]    [Pg.52]    [Pg.222]    [Pg.243]    [Pg.917]    [Pg.685]   
See also in sourсe #XX -- [ Pg.323 ]




SEARCH



Oxidation agent

Oxidation oxidizing agent

Oxidizing agents

Oxidizing agents oxidants

Silver carbonate, oxidizing agent

© 2024 chempedia.info