Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon, electron diffraction

The tnhahdes of phosphoms usually are obtained by direct halogenation under controlled conditions, eg, in carbon disulfide solution in the case of the triiodide. Phosphoms trifluoride [7647-19-0] is best made by transhalogenation of PCl using AsF or Cap2. AH of the phosphoms tnhahdes are both Lewis bases and acids. The phosphoms tnhahdes rapidly hydroly2e in water and are volatile. Examination by electron diffraction has confirmed pyramidal stmctures for the gaseous tnhahde molecules (36). Physical properties and heat of formation of some phosphoms hahdes are hsted in Table 7. [Pg.365]

Structural parameters and interatomic distances derived from electron diffraction (7) (77JST(42)l2i) and X-ray diffraction (8) studies (76AX(B)3178) provide unequivocal evidence that pyrazine is planar with >2a symmetry. There is an increased localization of electron density in the carbon-nitrogen bonds, with carbon-carbon bonds being similar in length to those in benzene. ... [Pg.158]

Electron diffraction studies [3] have revealed that hexagons within the sheets are helically wrapped along the axis of the nanotubes. The interlayer spacing between sheets is 0.34 nm which is slightly larger than that of graphite (0.3354 nm). It was dso reported [2] that the helicity aspect may vary from one nanotube to another. Ijima et al. [2] also reported that in addition to nanotubes, polyhedral particles consisting of concentric carbon sheets were also observed. [Pg.149]

The precise description of geometrical structures of CNTs has been reported by lijima [1], who was the first discoverer of carbon microtubules. Electron diffraction (ED) results are presented in Chap. 3. In this chapter, the authors will focus on the electronic structures of CNTs from the viewpoint of EELS by using TEM equipped with an energy-filter in the column or under the column. [Pg.31]

One important structural feature on which to focus is whether the nitrogen atom lies in the same plane as the three carbon atoms. Electron diffraction experiments have found the ground state to be slightly non-planar. You can determine the planarity of the structures you compute by examining the sum of the three C-N-C angles (for a planar molecule, the sum will be 360°) and by looking at the values of the C2-N-C4-O and C3-N-C4 Hg dihedral angles (in a planar structure, both will be 0°). [Pg.105]

Carbon-Carbon Bond Distances. The Electron Diffraction... [Pg.625]

Carbon-Carbon Bond Distances. The Electron Diffraction Investigation of Ethane, Propane, Isobutane, Neopentane, Cyclopropane, Cyclopentane, Cyclohexane, Allene, Ethylene, Isobutene, Tetramethylethylene, Mesitylene, and Hexamethylbenzene. [Pg.643]

It has been reported recently83 that the spectroscopic study of methylacetylene leads to the value 1.462 0.005 A. for the carbon-carbon single-bond distance in this substance. This is 0.08 A. less than the value 1.54 A. which we expect on the basis of the argument that constancy of the single-bond distance should be retained in the presence of an adjacent triple as well as of an adjacent double bond or aromatic nucleus. An electron-diffraction investigation of this substance is under way in these Laboratories. [Pg.653]

The most extensive application which was made of the resonance curve was to the carbon-chlorine bond in phosgene and the chloroethylenes. In the electron-diffraction study of these substances2 the carbon-carbon and carbon-oxygen doublebond values 1.38 and 1.28 A. were assumed the question accordingly arises as to what effect the new double bond values would have on the carbon-... [Pg.655]

The most important information about the nanoparticles is the size, shape, and their distributions which crucially influence physical and chemical properties of nanoparticles. TEM is a powerful tool for the characterization of nanoparticles. TEM specimen is easily prepared by placing a drop of the solution of nanoparticles onto a carbon-coated copper microgrid, followed by natural evaporation of the solvent. Even with low magnification TEM one can distinguish the difference in contrast derived from the atomic weight and the lattice direction. Furthermore, selective area electron diffraction can provide information on the crystal structure of nanoparticles. [Pg.58]

In an early electron diffraction investigation of the structure of 2-methylpropene (isobutylene), Bartell and Bonham (1960) found that the three terminal carbon atoms are arranged in an almost perfect equilateral triangle around the central carbon despite the considerable difference in the single and double bond lengths (Figure 5.4). This result led Bartell to suggest that the terminal carbon atoms are close-packed around the central carbon atom. He then... [Pg.116]

Fig. 5.2 Radial distribution curves, Pv Fig. 5.2 Radial distribution curves, Pv <v(r) 2/r for different vibrational states of carbon monosulfide, C = S, calcualted2 for Boltzmann distributions, with pv = exp(—EJkT), at T = 1000K (top) and T = 5000K (bottom) arbitrarily selected for the sake of illustration, where Ev is the energy level of state v. The figure conveys an impression of how state-average distance values, which can be derived from experimental spectroscopic data, differ from distribution-average values, derived from electron diffraction data for an ensemble of molecules at a given vibrational temperature. Both observables in turn differ from the unobservable stateless equilibrium distances which are temperature-independent in the Born-Oppenheimer approximation.
There have now been four experimental determinations of a silicon-carbon double bond length. The first of these was a gas phase electron diffraction study of 1,1-dimethylsilene (173). This study was the subject of much controversy since the experimentally determined bond length, 1.83 A, was much longer than the one predicted by ab initio calculations (1.69-1.71 A, see below) (159). Since the calculations were carried out at a relatively high level of theory and the effects of electron correlation on determining the Si=C bond length were considered, the validity of the data extracted from the electron diffraction study is in serious doubt. [Pg.17]

Although conventional electron-probe microanalysis appears to be unsuitable for analysis of the exposed surface layer of atoms in an alloy catalyst, recent developments have shown that X-ray emission analysis can still be used for this purpose (89, 90). By bombarding the surface with high energy electrons at grazing incidence, characteristic Ka radiation from monolayer quantities of both carbon and oxygen on an iron surface was observed. Simultaneously, information about the structure of the surface layer was obtained from the electron diffraction pattern. [Pg.144]

Fig. 5.16 (A) Bright-field TEM image and (B) element mapping carbon (brighter contrast corresponds to higher concentration of carbon) of ZnO synthesized in aqueous solution at 37 °C in pH 8 buffer for 4 h in the presence of 1.2 mgmL-1 of gelatin. The inset shows the electron diffraction pattern taken parallel to the platelet normal. (Reprinted with permission from [77], Copyright (2006) American Chemical Society). Fig. 5.16 (A) Bright-field TEM image and (B) element mapping carbon (brighter contrast corresponds to higher concentration of carbon) of ZnO synthesized in aqueous solution at 37 °C in pH 8 buffer for 4 h in the presence of 1.2 mgmL-1 of gelatin. The inset shows the electron diffraction pattern taken parallel to the platelet normal. (Reprinted with permission from [77], Copyright (2006) American Chemical Society).
Carbon deposition from CO on a cobalt catalyst at low pressures is known to be a structure-sensitive process. CO is adsorbed molecularly on the low index surfaces (Co (0001)), but its dissociation occurs on the Co (1012), Co (1120), and polycrystalline surfaces.5762 Deposition of carbon on Co (1012) and the probable formation of Co3C have been established by Auger emission spectroscopy (AES) and low-energy electron diffraction (LEED) techniques.66... [Pg.60]


See other pages where Carbon, electron diffraction is mentioned: [Pg.75]    [Pg.462]    [Pg.462]    [Pg.75]    [Pg.462]    [Pg.462]    [Pg.513]    [Pg.49]    [Pg.49]    [Pg.83]    [Pg.87]    [Pg.14]    [Pg.29]    [Pg.148]    [Pg.158]    [Pg.77]    [Pg.65]    [Pg.458]    [Pg.587]    [Pg.643]    [Pg.351]    [Pg.510]    [Pg.500]    [Pg.100]    [Pg.363]    [Pg.406]    [Pg.43]    [Pg.84]    [Pg.517]    [Pg.91]    [Pg.324]    [Pg.602]    [Pg.305]    [Pg.306]    [Pg.114]   


SEARCH



Carbon Fibers electron diffraction

Carbon diffraction

Carbon electrons

Carbon whisker, electron diffraction

Carbon, electron diffraction pattern

Carbon, electron diffraction pattern from

Electron diffraction

Electronic diffraction

Electrons diffracted

© 2024 chempedia.info