Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon electrodes reactions

A typical 20-MW, a-c furnace is fitted with three 45-in. (114.3-cm) prebaked amorphous carbon electrodes equdateraHy spaced, operating on a three-phase delta connection. The spacing of the electrodes is designed to provide a single reaction zone between the three electrodes. The furnace is rotated to give one revolution in two to four days or it may be oscillated only. Rotation of the furnace relative to the electrodes minimizes silicon carbide buildup in the furnace. [Pg.535]

Carbon Electrodes. Carbon electrodes are rigid carbonaceous shapes deployed in electric furnaces. They are the final link in the chain of conductors from the energy source to the reaction zone of an electrically heated vessel. The gap bridged by the electrode is that between the contact plates that transmit current to the electrode and the discharge area at the arc end of the electrode. [Pg.518]

The reaction of CH4 with hydrogen, at the odrer end of die oxidation scale, produces mainly acetylene, C2H2, edrylene C2H4 and ethane, C2H6. These reactions are favoured by operating at high temperatures. In fact the production of acetylene is most efficient if die gas mixmre is passed drrough an arc struck between carbon electrodes, which probably produces a reaction temperature in excess of 2500 K. [Pg.142]

By tire coiTect choice of the metal oxide/carbon ratio in the ingoing burden for the furnace, the alloy which is produced can have a controlled content of carbon, which does not lead to the separation of solid carbides during the reduction reaction. The combination of the carbon electrode, tire gaseous oxides and the foamed slag probably causes tire formation of a plasma region between the electrode aird the slag, and this is responsible for the reduction of elecU ical and audible noise which is found in this operation, in comparison with tire arc melting of scrap iron which is extremely noisy, and which injects unwanted electrical noise into the local electrical distribution network. [Pg.336]

Subsequently, a number of reactions at poly-L-valine coated carbon electrodes 237-243) gj.g reported to yield optically active products. Reductions, e.g. of citraconic acid or l,l-dibromo-2,2-diphenylcyclopropane as well as the oxidation of aryl-alkyl sulfides proceeded with chiral induction at such electrodes... [Pg.73]

TaUe 4. Asymmrtric electrochemical reactions at poly-L-valine coated carbon electrodes... [Pg.74]

Great promise exists in the use of graphitic carbons in the electrochemical synthesis of hydrogen peroxide [reaction (15.21)] and in the electrochemical reduction of carbon dioxide to various organic products. Considering the diversity in structures and surface forms of carbonaceous materials, it is difficult to formulate generalizations as to the influence of their chemical and electron structure on the kinetics and mechanism of electrochemical reactions occurring at carbon electrodes. [Pg.543]

Since the reaction between hydrogen and oxygen is very slow at room temperature, catalysts are incorporated in the carbon electrodes. At the anode, suitable catalysts are finely divided into platinum or palladium at the cathode, cobaltous oxide, or silver. The two halfreactions shown above yield the overall result as ... [Pg.669]

These reactions proceed very rapidly, so that the overall reaction corresponds to the transfer of two electrons. As reaction (5.7.9) is very slow in acid and neutral media, the electrode reaction is irreversible and the polarization curve does not depend on the concentration of hydrogen ions. In weakly alkaline media, reoxidation of H02 begins to occur. At pH > 11, the polarization curve at a dropping mercury electrode becomes reversible. In this way, the process proceeds in water and water-like solvents. On the other hand, for example in carbonate melts, the step following after the reaction (5.7.9) is the slow reaction 02 + e = 022-. [Pg.371]

Sonoelectrochemistry has also been used for the efficient employment of porous electrodes, such as carbon nanofiber-ceramic composites electrodes in the reduction of colloidal hydrous iron oxide [59], In this kind of systems, the electrode reactions proceed with slow rate or require several collisions between reactant and electrode surface. Mass transport to and into the porous electrode is enhanced and extremely fast at only modest ultrasound intensity. This same approach was checked in the hydrogen peroxide sonoelectrosynthesis using RVC three-dimensional electrodes [58]. [Pg.115]

Cyclic voltammetry, square-wave voltammetry, and controlled potential electrolysis were used to study the electrochemical oxidation behavior of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions were investigated. Following optimization of voltammetric parameters, pH, and reproducibility, a linear calibration curve over the range 1 x 10 6 to 1 x 10 4 mol/dm3 niclosamide was achieved. The detection limit was found to be 8 x 10 7 mol/dm3. This voltammetric method was applied for the determination of niclosamide in tablets [33]. [Pg.83]

Asymmetric ECH with [Rh(L)2(Cl)2]+ complexes containing chiral polypyridyl ligands has been attempted, in homogeneous media (L = (7)-(12)) and at carbon electrodes coated with polymer films prepared by electropolymerization of [Rh(13)2(Cl)2]+ -61 62 The latter catalytic system gave the best results in terms of turnover number (up to 4,750) and enantiomeric excess, (ee) when applied to the hydrogenation of acetophenone (ee 18%) and 2-butanone (ee 10%).62 Polymeric materials derived from the complexes [RhI(bpy)(COD)]+ 36 and [Pd(bpy)2]2+33have also been applied to the ECH reaction. [Pg.478]

The electrochemical intercalation of Li was studied for carbon electrodes modified by the 2Co-Ni complex, which showed the best effect in the reaction of oxygen electroreduction. Galvanostatic charge-discharge technique (PC governed automatic bench) in 2016 coin type cells was used for this purpose. [Pg.349]


See other pages where Carbon electrodes reactions is mentioned: [Pg.544]    [Pg.285]    [Pg.544]    [Pg.285]    [Pg.24]    [Pg.493]    [Pg.536]    [Pg.564]    [Pg.368]    [Pg.105]    [Pg.528]    [Pg.772]    [Pg.71]    [Pg.240]    [Pg.242]    [Pg.439]    [Pg.440]    [Pg.484]    [Pg.719]    [Pg.191]    [Pg.194]    [Pg.370]    [Pg.585]    [Pg.587]    [Pg.594]    [Pg.97]    [Pg.468]    [Pg.377]    [Pg.666]    [Pg.669]    [Pg.304]    [Pg.167]    [Pg.234]    [Pg.386]    [Pg.103]    [Pg.182]    [Pg.221]    [Pg.435]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Carbon electrode

Carbon electrodes biologically active, reactions

Carbonate electrode

Electrode reactions

Glassy carbon electrodes electrocatalytic reactions

Glassy carbon electrodes reactions

© 2024 chempedia.info