Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon deposition catalyst

The carbon deposited catalysts were treated both by oxidation and hydrogenation at temperatures in the range of 873-1173 K for various exposure times. Some results of oxidation treatment are presented in... [Pg.23]

Fig. 11. The loss of carbon rapidly increases with the increase of temperature. Heating of the catalysts in open air for 30 minutes at 973 K leads to the total elimination of carbon from the surface. The gasification of amorphous carbon proceeds more rapidly than that of filaments. The tubules obtained after oxidation of carbon-deposited catalysts during 30 minutes at 873 K are almost free from amorphous carbon. The process of gasification of nanotubules on the surface of the catalyst is easier in comparison with the oxidation of nanotubes containing soot obtained by the arc-discharge method[28, 29]. This can be easily explained, in agreement with Ref [30], by the surface activation of oxygen of the gaseous phase on Co-Si02 catalyst. Fig. 11. The loss of carbon rapidly increases with the increase of temperature. Heating of the catalysts in open air for 30 minutes at 973 K leads to the total elimination of carbon from the surface. The gasification of amorphous carbon proceeds more rapidly than that of filaments. The tubules obtained after oxidation of carbon-deposited catalysts during 30 minutes at 873 K are almost free from amorphous carbon. The process of gasification of nanotubules on the surface of the catalyst is easier in comparison with the oxidation of nanotubes containing soot obtained by the arc-discharge method[28, 29]. This can be easily explained, in agreement with Ref [30], by the surface activation of oxygen of the gaseous phase on Co-Si02 catalyst.
Co/A1203 catalysts that contain higher amounts of less reactive polymeric carbon not only exhibited enhanced deactivation when tested in FTS when compared to the fresh catalyst, but also showed an increase in selectivity to olefinic products.31 The authors postulated that this was probably due to the reduction in hydrogenation ability of the carbon deposited catalyst to convert primarily formed olefins into the corresponding paraffins. [Pg.73]

Hydrogenation of the oxides of carbon to methane according to the above reactions is sometimes referred to as the Sabatier reactions. Because of the high exothermicity of the methanization reactions, adequate and precise cooling is necessary in order to avoid catalyst deactivation, sintering, and carbon deposition by thermal cracking. [Pg.70]

Naphtha desulfurization is conducted in the vapor phase as described for natural gas. Raw naphtha is preheated and vaporized in a separate furnace. If the sulfur content of the naphtha is very high, after Co—Mo hydrotreating, the naphtha is condensed, H2S is stripped out, and the residual H2S is adsorbed on ZnO. The primary reformer operates at conditions similar to those used with natural gas feed. The nickel catalyst, however, requires a promoter such as potassium in order to avoid carbon deposition at the practical levels of steam-to-carbon ratios of 3.5—5.0. Deposition of carbon from hydrocarbons cracking on the particles of the catalyst reduces the activity of the catalyst for the reforming and results in local uneven heating of the reformer tubes because the firing heat is not removed by the reforming reaction. [Pg.420]

Thermal cracking tends to deposit carbon on the catalyst surface which can be removed by steaming. Carbon deposition by this mechanism tends to occur near the entrance of the catalyst tubes before sufficient hydrogen has been produced by the reforming reactions to suppress the right hand side of the reaction. Promoters, such as potash, are used to help suppress cracking in natural gas feedstocks containing heavier hydrocarbons. Carbon may also be formed by both the disproportionation and the reduction of carbon monoxide... [Pg.346]

The heat released from the CO—H2 reaction must be removed from the system to prevent excessive temperatures, catalyst deactivation by sintering, and carbon deposition. Several reactor configurations have been developed to achieve this (47). [Pg.277]

As it was established by Geus et a/.[18, 19] the decrease of the rate of carbon deposition is a positive factor for the growth of fibres on metal catalysts. Si02 is an inhibitor of carbon condensation as was shown in Ref [20]. This support also provides possibilities for the stabilization of metal dispersion. Co and Fe, i.e. the metals that give the best results for the tubular condensation of carbon on graphite support, were introduced on the surface of siUca gel... [Pg.16]

The carbon-containing catalyst was treated by ultra-sound (US) in acetone at different conditions. The power of US treatment, and the time and regime (constant or pulsed), were varied. Even the weakest treatments made it possible to extract the nanotubules from the catalyst. With the increase of the time and the power of treatment the amount of extracted carbon increased. However, we noticed limitations of this method of purification. The quantity of carbon species separated from the substrate was no more than 10% from all deposited carbon after the most powerful treatment. Moreover, the increase of power led to the partial destruction of silica grains, which were then extracted with the tubules. As a result, even in the optimal conditions the final product was never completely free of silica (Fig. 12). [Pg.24]

In this study we have shown that the catalytic method—carbon deposition during hydrocarbons conversion—can be widely used for nanotubule production methods. By variation of the catalysts and reaction conditions it is possible to optimize the process towards the preferred formation of hollow... [Pg.24]

Over the next four years, Houdry, working closely with Sun s engineering team headed by Clarence Thayer, worked to build a commercial plant. The limitations imposed by a static catalyst bed design imposed a major obstacle, particularly in the formation of carbon deposits that fouled the catalyst mass and impeded a continuous system of production. [Pg.991]

Following cracking, the spent catalyst and oil descended to a disengager that separated the gasoline from the catalyst. The catalyst, with oil residue entrained on its surface, then moved through a purging section where superheated steam thermally removed oil remnants. The oil-free catalyst, still laden with carbon deposits, was then lifted by elevator from the bottom of the reactor to the top of the regenerator. [Pg.992]

In the context of industrial compressors, dust is a major consideration. Such compressors have a very high throughput of air, and even in apparently clean atmospheres, the quantity of airborne dirt is sufficient to cause trouble if the compressor is not fitted with an air-intake filter. Many of the airborne particles in an industrial atmosphere are abrasive, and they cause accelerated rates of wear in any compressor with sliding components in the compressor chamber. The dirt passes into the oil, where it may accumulate and contribute very seriously to the carbon deposits in valves and outlet pipes. Another consideration is that dirt in oil is likely to act as a catalyst, thus encouraging oxidation. [Pg.877]

Tn the synthesis of methane from carbon monoxide and hydrogen, it is desired to operate the reactor or reactors in such a way as to avoid carbon deposition on catalyst surfaces and to produce high quality product gas. Since gas compositions entering the reactor may vary considerably because of the use of diluents and recycle gas in a technical operation, it is desirable to estimate the effects of initial gas composition on the subsequent operation. Pressure and temperature are additional variables. [Pg.40]

It was shown in laboratory studies that methanation activity increases with increasing nickel content of the catalyst but decreases with increasing catalyst particle size. Increasing the steam-to-gas ratio of the feed gas results in increased carbon monoxide shift conversion but does not affect the rate of methanation. Trace impurities in the process gas such as H2S and HCl poison the catalyst. The poisoning mechanism differs because the sulfur remains on the catalyst while the chloride does not. Hydrocarbons at low concentrations do not affect methanation activity significantly, and they reform into methane at higher levels, hydrocarbons inhibit methanation and can result in carbon deposition. A pore diffusion kinetic system was adopted which correlates the laboratory data and defines the rate of reaction. [Pg.56]

As was noted for experiments HGR-12, HGR-13, and HGR-14, the rate of catalyst deactivation increased as the fresh gas feed rate increased. It is possible that higher rates of carbon deposition and metal sintering occur at the higher feed rates with resultant higher deactivation rates. [Pg.120]

Nickel catalysts were used in most of the methanation catalytic studies they have a rather wide range of operating temperatures, approximately 260°-538°C. Operation of the catalytic reactors at 482°-538°C will ultimately result in carbon deposition and rapid deactivation of the catalysts (10). Reactions below 260°C will usually result in formation of nickel carbonyl and also in rapid deactivation of the catalysts. The best operating range for most fixed-bed nickel catalysts is 288°-482 °C. Several schemes have been proposed to limit the maximum temperature in adiabatic catalytic reactors to 482°C, and IGT has developed a cold-gas recycle process that utilizes a series of fixed-bed adiabatic catalytic reactors to maintain this temperature control. [Pg.134]

Catalyst stability studies were conducted using a variety of model feeds. The results using 0.7 wt % propionic acid in aqueous HBr demonstrate the effectiveness of operating at partial conversion to monitor deactivation. Figure 6 shows that at 292 °C, the propionic acid-contaminated feed caused rapid deactivation. Subsequent analysis of the catalyst showed carbon deposits on the catalyst. [Pg.312]


See other pages where Carbon deposition catalyst is mentioned: [Pg.24]    [Pg.573]    [Pg.373]    [Pg.383]    [Pg.24]    [Pg.573]    [Pg.373]    [Pg.383]    [Pg.49]    [Pg.422]    [Pg.458]    [Pg.276]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.223]    [Pg.224]    [Pg.415]    [Pg.509]    [Pg.131]    [Pg.135]    [Pg.141]    [Pg.447]    [Pg.206]    [Pg.56]    [Pg.990]    [Pg.991]    [Pg.75]    [Pg.995]    [Pg.1078]    [Pg.52]    [Pg.59]    [Pg.68]    [Pg.106]    [Pg.119]    [Pg.172]    [Pg.189]   
See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.191 ]




SEARCH



Carbon deposition on nickel catalysts

Carbon deposition, with catalysts

Carbonate deposits

Catalyst deposits

Catalysts carbon

Formation and Carbon Deposition on Iron Catalysts

Nickel catalyst carbon deposits

Nickel catalysts, carbon deposition

© 2024 chempedia.info