Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon cyclopentadienyls

The full ab-initio molecular dynamics simulation revealed the insertion of ethylene into the Zr-C bond, leading to propyl formation. The dynamics simulations showed that this first step in ethylene polymerisation is extremely fast. Figure 2 shows the distance between the carbon atoms in ethylene and between an ethylene carbon and the methyl carbon, from which it follows that the insertion time is only about 170 fs. This observation suggests the absence of any significant barrier of activation at this stage of the polymerisation process, and for this catalyst. The absence or very small value of a barrier for insertion of ethylene into a bis-cyclopentadienyl titanocene or zirconocene has also been confirmed by static quantum simulations reported independently... [Pg.434]

Ferrocene Figure 2-47) provides a prime ex.ample of multi-haptic bonds, i.e, a situation where the electrons that coordinate the cyclopentadienyl rings with the iron atom arc contained in molecular orbitals delocalised over the iron atom and the 10 carbon atoms of the cyclopentadienyl rings [82. ... [Pg.64]

Representation of such a system by a connection tabic having bonds between the iron atom and the five carbon atoms of either one of the two cyclopentadienyl rings is totally inadequate. A few other examples of structures that can no longer be adequately described by a standard connection table are given in the Section 2.G.2. [Pg.64]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

The stereospedfic and regioselective hydrobromination of alkynes with chlorobis(T -cyclopentadienyl)hydrozirconium and NBS produces ( )-vinylic bromides in good yields. The bromine atom usually adds regioselectively to the carbon atom that bears the smaller substituent and stereoselectively trans to the larger substituent (D.W. Hart, 1975 M. Nakatsuka,... [Pg.132]

Write resonance structures for cyclopentadienyl anion suffi cient to show the delocalization of the negative charge over all five carbons J... [Pg.459]

Manganese cyclopentadienyl tricarbonyl (as Mn) Marble/calcium carbonate Mercury (alkyl compounds) (as Hg)... [Pg.379]

The CC bond distances in cyclopentadienyl anion, C5H5, are all equal, because the anion is aromatic (see Chapter 12, Problem 10). Electrophiles that interact electrostaticaUy with the anion, such as Na", interact equally with all five carbons, and do not disturb the anion s aromatic character. On the other hand, electrophiles that make covalent bonds, such as H", might interact more strongly with one particular carbon and destroy the aromaticity of the ring. [Pg.184]

Interaction of the iron metal atoms with thiophenes (thiophene, 2-methyl-, and 2,5-dimethylthiophene) in the vapor phase at 77 K with subsequent heating in a carbon monoxide atmosphere also leads to the formation of ferrole 83 [76JOM(l 18)37, 77CJC3509]. The iron cyclopentadienyl ring is planar and all the bonds have multiple character. [Pg.19]

JOM(400)149 96BSCF33]. The complex 164 is the first known t] -phospholyl species. The tungsten atoms have a coordination number of 9, and the carbon atoms of the phospholyl ring are coplanar. The phosphorus atom deviates from the plane of carbon atoms by 0.015 nm. The basic difference between the Ti -cyclopentadienyl and ri -phospholyl complexes is the existence of a low-lying LUMO localized mainly at the phosphorus atom. [Pg.145]

Ti -Cyclopentadienyl(triphenylphosphine)cobalt reacts with phosphites and forms complexes of 1-alkoxyphosphole oxides 251 (R = Me, Et, Ph) through a step involving (ri -cyclopentadienyl)(phosphite)cobalt (80JA4363). (ri -Cp)Co(PF3)2 reacts with hexafluorobut-2-yne and 252 is formed, which hydrolyzes into 253 (X = OH) [73JCS(CC)583 75JCS(D)197]. The five-member ring has the envelope conformation, in which the carbon atoms are coplanar, and the phosphorus atom deviates from this plane in the direction opposite to the cobalt atom. The heterocycle is a four-electron donor relative to the metal center. [Pg.161]

Problem 15.6 Draw the five resonance structures of the cyclopentadienyl anion. Are all carbon-carbon bonds equivalent How many absorption lines would you expect to see in the lH NMR and, 3C NMR spectra of the anion ... [Pg.527]

Alkylation of the anion 2 with iodomethane or other haloalkanes provides alkyldicarbonyl(t/5-cyclopentadienyl)iron complexes such as 53,0 (see also Houben-Weyl, Vol. 13/9a, p 209). Migratory insertion of carbon monoxide occurs on treatment with phosphanes or phosphites9 -11 (see also Houben-Weyl, Vol. d3/9a, p257) to provide chiral iron-acyl complexes such as 6. This is the most commonly used preparation of racemic chiral iron-acyl complexes. [Pg.518]

Two commonly used synthetic methodologies for the synthesis of transition metal complexes with substituted cyclopentadienyl ligands are important. One is based on the functionalization at the ring periphery of Cp or Cp metal complexes and the other consists of the classical reaction of a suitable substituted cyclopentadienyl anion equivalent and a transition metal halide or carbonyl complex. However, a third strategy of creating a specifically substituted cyclopentadienyl ligand from smaller carbon units such as alkylidynes and alkynes within the coordination sphere is emerging and will probably find wider application [22]. [Pg.101]

Conjugated dienes can add hydrogen by 1,2 or 1,4 addition. Selective 1,4 addition can be achieved by hydrogenation in the presence of carbon monoxide, with bis(cyclopentadienyl)chromium as catalyst. With allenes catalytic hydrogenation usually reduces both double bonds. [Pg.1005]

In an attempt to change the electronics of the chromium atom, we are replacing the carbon based cyclopentadienyl ring with ligands containing harder donor atoms. For example, we have employed the tris(pyrazolyl)borate moiety, an isoclectronic replacement for Cp featuring tridentate N-coordination.[9] Figure 2 shows the molecular structure of Tp SU Cr-Ph, a representative Cr° alkyl. It will be noted, that this complex is mononuclear, due to the steric protection of the extremely bulky tris(pyrazolyl)borate. [Pg.157]

The fourth chapter gives a comprehensive review about catalyzed hydroamina-tions of carbon carbon multiple bond systems from the beginning of this century to the state-of-the-art today. As was mentioned above, the direct - and whenever possible stereoselective - addition of amines to unsaturated hydrocarbons is one of the shortest routes to produce (chiral) amines. Provided that a catalyst of sufficient activity and stabihty can be found, this heterofunctionalization reaction could compete with classical substitution chemistry and is of high industrial interest. As the authors J. J. Bmnet and D. Neibecker show in their contribution, almost any transition metal salt has been subjected to this reaction and numerous reaction conditions were tested. However, although considerable progress has been made and enantios-electivites of 95% could be reached, all catalytic systems known to date suffer from low activity (TOP < 500 h ) or/and low stability. The most effective systems are represented by some iridium phosphine or cyclopentadienyl samarium complexes. [Pg.289]


See other pages where Carbon cyclopentadienyls is mentioned: [Pg.123]    [Pg.458]    [Pg.612]    [Pg.398]    [Pg.369]    [Pg.150]    [Pg.167]    [Pg.458]    [Pg.612]    [Pg.1223]    [Pg.182]    [Pg.155]    [Pg.145]    [Pg.148]    [Pg.164]    [Pg.30]    [Pg.523]    [Pg.99]    [Pg.110]    [Pg.365]    [Pg.6]    [Pg.243]    [Pg.185]    [Pg.188]    [Pg.342]    [Pg.53]    [Pg.104]    [Pg.225]    [Pg.208]    [Pg.5]    [Pg.248]   
See also in sourсe #XX -- [ Pg.186 , Pg.187 ]




SEARCH



© 2024 chempedia.info