Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon boride

Borides Carbon boride, CB6. and silicon borides SiB3 and SiB6 are hard, crystalline solids, produced in ihe electric furnace magnesium boride, Mgi B2, brown solid, by reaction of boron oxide and magnesium powder ignited, forms boron hydrides with HC1 calcium boride, Ca3 B2, forms boron hydrides and hydrogen gas with IIC1. [Pg.254]

Carbon boride, CB6, forms lustrous black crystals, nearly as hard as diamond, on which facets can be cut by its use it is produced by heating a mixture of amorphous boron and sugar-charcoal in the electric furnace. [Pg.190]

Graphite does not react with molten fluoride mixtures of the type to be used in MSR concepts considered above (after carbon, borides, and nitrides appear to be the most compatible nonmetaUic materials). Available thermodynamic data suggest that the most likely reaction ... [Pg.160]

Hafnium Boride. Hafnium diboride [12007-23-7] HfB2, is a gray crystalline soHd. It is usually prepared by the reaction of hafnium oxide with carbon and either boron oxide or boron carbide, but it can also be prepared from mixtures of hafnium tetrachloride, boron trichloride, and hydrogen above 2000°C, or by direct synthesis from the elements. Hafnium diboride is attacked by hydrofluoric acid but is resistant to nearly all other reagents at room temperature. Hafnium dodecaboride [32342-52-2] has been prepared by direct synthesis from the elements (56). [Pg.444]

Refractory Compounds. Refractory compounds resemble oxides, carbides, nitrides, borides, and sulfides in that they have a very high melting point. In some cases, they form extensive defect stmctures, ie, they exist over a wide stoichiometric range. For example, in TiC, the C Ti ratio can vary from 0.5 to I.O, which demonstrates a wide range of vacant carbon lattice sites. [Pg.43]

Preparation. The simplest method of preparation is a combination of the elements at a suitable temperature, usually ia the range of 1100—2000°C. On a commercial scale, borides are prepared by the reduction of mixtures of metallic and boron oxides usiag aluminum, magnesium, carbon, boron, or boron carbide, followed by purification. Borides can also be synthesized by vapor-phase reaction or electrolysis. [Pg.219]

The binary borides (p. 145), carbides (p. 299), and nitrides (p. 418) have already been discussed. Suffice it to note here that the chromium atom is too small to allow the ready insertion of carbon into its lattice, and its carbide is consequently more reactive than those of its predecessors. As for the hydrides, only CrH is known which is consistent with the general trend in this part of the periodic table that hydrides become less stable across the d block and down each group. [Pg.1007]

Catalysts show remarkable product variation in hydrogenation of simple nitriles. Propionitrile, in neutral, nonreactive media, gives on hydrogenation over rhodium-on-carbon high yields of dipropylamine, whereas high yields of tripropylamine arise from palladium or platinum-catalyzed reductions (71). Parallel results were later found for butyronitrile (2S) and valeronitrile (74) but not for long-chain nitriles. Good yields of primary aliphatic amines can be obtained by use of cobalt, nickel, nickel boride, rhodium, or ruthenium in the presence of ammonia (4J 1,67,68,69). [Pg.97]

Among metal borides of the formula MjM B or (Mj, M/r)2B, the competing structural units are (a) the antiprism and (b) the trigonal metal prism. In many cases the CUAI2 structure with BMg-antiprismatic B coordination is adopted in close resemblance to transition-metal silicides, but no boron-carbon substitution is ob-served - " . [Pg.167]

Rare-earth (and actinide)-B-carbon compounds resemble metal borides in B-rich carboborides, whereas the physical and structural properties of C-rich borocarbides tend to a more earbide-like behavior (which will not be covered in this context). [Pg.198]

Apart from the reactions described above for the formation of thin films of metals and compounds by the use of a solid source of the material, a very important industrial application of vapour phase transport involves the preparation of gas mixtures at room temperature which are then submitted to thermal decomposition in a high temperature furnace to produce a thin film at this temperature. Many of the molecular species and reactions which were considered earlier are used in this procedure, and so the conclusions which were drawn regarding choice and optimal performance apply again. For example, instead of using a solid source to prepare refractory compounds, as in the case of silicon carbide discussed above, a similar reaction has been used to prepare titanium boride coatings on silicon carbide and hafnium diboride coatings on carbon by means of a gaseous input to the deposition furnace (Choy and Derby, 1993) (Shinavski and Diefendorf, 1993). [Pg.106]

Application of carbo-thermal reduction. This is a synthesis process for the preparation of powders of carbides, nitrides and borides. Carbon may be graphite, coke, pyrolysed organic polymers. A reference process may be the Acheson process for the production of SiC ... [Pg.602]

In finely divided form, hafnium is pyrophoric, igniting in air spontaneously. However, bulk metal reacts slowly in oxygen or air above 400°C. The rate of oxidation increases with temperature. The product is hafnium dioxide, Hf02. It combines with nitrogen, carbon, boron, sulfur and silicon at very high temperatures to form hafnium nitride HfN, hafnium boride HfB, hafnium sulfide HfSi2, respectively. Nitride formation occurs at 900°C. [Pg.332]

Niobium combines with carbon, boron, silicon and other elements at very high temperatures, forming interstitial binary compounds of varying compositions. With carbon, it forms niobium carbide having compositions varying from NbCo.7 to NbC [12069-94-2]. With boron, the products are orthorhombic niobium boride, NbB [12045-19-1], and the hexagonal diniobium diboride, Nb2B2[12007-29-3]. [Pg.631]


See other pages where Carbon boride is mentioned: [Pg.356]    [Pg.356]    [Pg.202]    [Pg.47]    [Pg.224]    [Pg.301]    [Pg.106]    [Pg.336]    [Pg.272]    [Pg.273]    [Pg.274]    [Pg.63]    [Pg.138]    [Pg.414]    [Pg.1039]    [Pg.602]    [Pg.328]    [Pg.329]    [Pg.220]    [Pg.39]    [Pg.257]    [Pg.417]    [Pg.158]    [Pg.291]    [Pg.598]    [Pg.921]    [Pg.344]    [Pg.1241]    [Pg.47]    [Pg.158]    [Pg.207]    [Pg.771]    [Pg.204]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Borides

© 2024 chempedia.info