Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbohydrates class reactions

The most important photochemical reaction of carbon to carbon unsaturated carbohydrates is addition to the unsaturated system. Two types of addition reaction are readily recognized. The first consists of those in which the molecule adding to the carbohydrate does so by involving a 77-bond of its own. Processes of this type, listed in Table I, are those which lead to formation of a new ring-system (cycloaddition). The second class of addition reaction is one in which a cr-bond is broken in the molecule adding to the unsaturated carbohydrate. The reactions that belong to the latter category (see Tables II and III) follow two basic patterns, and comprise the majority of the addition processes reported. [Pg.106]

Sections Carbohydrates undergo chemical reactions characteristic of aldehydes and 25.17-25.24 ketones, alcohols, diols, and other classes of compounds, depending on their structure. A review of the reactions described in this chapter is presented in Table 25.2. Although some of the reactions have synthetic value, many of them are used in analysis and structure deter-mination. [Pg.1062]

The [ 2 + 4]-cycloaddition reaction of aldehydes and ketones with 1,3-dienes is a well-established synthetic procedure for the preparation of dihydropyrans which are attractive substrates for the synthesis of carbohydrates and other natural products [2]. Carbonyl compounds are usually of limited reactivity in cycloaddition reactions with dienes, because only electron-deficient carbonyl groups, as in glyoxy-lates, chloral, ketomalonate, 1,2,3-triketones, and related compounds, react with dienes which have electron-donating groups. The use of Lewis acids as catalysts for cycloaddition reactions of carbonyl compounds has, however, led to a new era for this class of reactions in synthetic organic chemistry. In particular, the application of chiral Lewis acid catalysts has provided new opportunities for enantioselec-tive cycloadditions of carbonyl compounds. [Pg.156]

We ll see later in this chapter and again in Chapter 29 that carbonyl condensation reactions occur frequently in metabolic pathways. In fact, almost all classes of biomolecules—carbohydrates, lipids, proteins, nucleic acids, and many others—are biosynthesized through pathways that involve carbonyl condensation reactions. As with the or-substitution reaction discussed in the previous chapter, the great value of carbonyl condensations is that they are one of the few general methods for forming carbon-carbon bonds, thereby making it possible to build larger molecules from smaller precursors. We ll see how and why these reactions occur in this chapter. [Pg.877]

Biochemistry is carbonyl chemistiy. Almost all metabolic pathways used by living organisms involve one or more of the four fundamental carbonvl-group reactions we ve seen in Chapters 19 through 23. The digestion and metabolic breakdown of all the major classes of food molecules—fats, carbohydrates, and proteins—take place by nucleophilic addition reactions, nucleophilic acyl substitutions, a substitutions, and carbonyl condensations. Similarly, hormones and other crucial biological molecules are built up from smaller precursors by these same carbonyl-group reactions. [Pg.903]

Section II explains how various cellular reactions either utihze or release energy, and it traces the pathways by which carbohydrates and lipids are synthesized and degraded. It also describes the many functions of these two classes of molecules. [Pg.699]

Aromatic amines that have been used include o-toluidine, p-aminosali-cylic acid, p-aminobenzoic acid, diphenylamine and p-aminophenol. Their ability to react preferentially with a particular carbohydrate or class of carbohydrate is often useful, e.g. p-aminophenol, which shows some specificity for ketoses compared with aldoses and is useful for measuring fructose. These reagents have proved particularly useful for the visualization and identification of carbohydrates after separation of mixtures by paper or thin-layer chromatography, when colour variations and the presence or absence of a reaction aid the interpretation of the chromatogram. [Pg.326]

Many aspects of the chemistry of carbohydrates are not specihc to this class of compounds, but are merely examples of the simple chemical reactions we have already met. Therefore, against usual practice, we have not attempted a full treatment of carbohydrate chemistry and biochemistry in this chapter. We want to avoid giving the impression that the reactions described here are something special to this group of compounds. Instead, we have deliberately used carbohydrates as examples of reactions in earlier chapters, and you will find suitable cross-references. [Pg.463]

Esterification of carbohydrates with fatty esters is an important reaction that provides an important class of safer non-ionic surfactants. These biodegradable surfactants are widely used in the detergent, cosmetic, pharmaceutical, and food industries [124-127]. [Pg.84]

In this section, enzymes in the EC 2.4. class are presented that catalyze valuable and interesting reactions in the field of polymer chemistry. The Enzyme Commission (EC) classification scheme organizes enzymes according to their biochemical function in living systems. Enzymes can, however, also catalyze the reverse reaction, which is very often used in biocatalytic synthesis. Therefore, newer classification systems were developed based on the three-dimensional structure and function of the enzyme, the property of the enzyme, the biotransformation the enzyme catalyzes etc. [88-93]. The Carbohydrate-Active enZYmes Database (CAZy), which is currently the best database/classification system for carbohydrate-active enzymes uses an amino-acid-sequence-based classification and would classify some of the enzymes presented in the following as hydrolases rather than transferases (e.g. branching enzyme, sucrases, and amylomaltase) [91]. Nevertheless, we present these enzymes here because they are transferases according to the EC classification. [Pg.29]

In the first Section, the dolichol pathway of protein glycosylation is introduced, and the reader is made familiar with the various reactions in the formation of the lipid and carbohydrate moieties of lipid-linked saccharides. Three different classes of compound are known so far (a) isoprenoid alcohol esters of monosaccharide monophosphates, such as D-mannosyl and D-glucosyl (dolichol phosphate), (b) such isoprenoid alcohol esters of saccharide diphosphates as dolichol diphosphate linked to 2-acetamido-2-deoxy-D-glucose and to oligosaccharides, and (c) retinol (D-mannosyl phosphate). The dolichol-linked sugars occur in all eukaryotes. [Pg.288]


See other pages where Carbohydrates class reactions is mentioned: [Pg.398]    [Pg.91]    [Pg.1363]    [Pg.387]    [Pg.422]    [Pg.14]    [Pg.145]    [Pg.146]    [Pg.18]    [Pg.58]    [Pg.409]    [Pg.7]    [Pg.68]    [Pg.232]    [Pg.212]    [Pg.92]    [Pg.17]    [Pg.141]    [Pg.181]    [Pg.101]    [Pg.2]    [Pg.16]    [Pg.239]    [Pg.241]    [Pg.337]    [Pg.57]    [Pg.28]    [Pg.180]    [Pg.473]    [Pg.256]    [Pg.361]    [Pg.125]    [Pg.2]    [Pg.10]    [Pg.163]    [Pg.188]    [Pg.266]    [Pg.9]    [Pg.239]   
See also in sourсe #XX -- [ Pg.463 , Pg.465 ]




SEARCH



Carbohydrates reactions

Class reactions

© 2024 chempedia.info