Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocation concentration

A systematic carbocation concentration dependency study on NMR chemical shifts was performed for the C-l-protonated 477-cyclopenta[fi e/ phenanthrenium cation 7H+ and the C-l-protonated pyrenium cation 2H+ (Fig. 11). Shielding of the PAH arenium ion protons and carbons was observed with decreasing FSO3H PAH ratios without noticeable line-broadening. This was attributed to cation-anion interactions in the low FSO3H PAH domain and possible formation of contact ion... [Pg.144]

The benzhydryl chlorides and BC13 react with formation of ion pairs (ionization constant, Ki) which dissociate to give the free ions (dissociation constant, KD). Because paired and free diarylcarbenium ions show only slightly different UV-visible spectra, [41], spectrophotometric measurements allow the determination of the total carbocation concentration. On the other hand, only free ions are detected by conductometric analysis, and a combination of both methods allows the determination of Ki and Kd using the theory of binary ionogenic equilibria [42,43]. [Pg.62]

When an appropriate alkene is added, color and conductance disappear due to the formation of covalent adducts (Scheme 34). For the success of the method it is essential that the chloride transfer from the complex anion to the new carbocation is fast and complete, because only then the selective formation of 1 1 products and the controlled decay of absorbance and conductance is warranted. Ideally, both quantities (absorbance and conductance) yield the same dependence of carbocation concentration on time, and the second-order rate law (18) is generally obeyed. [Pg.85]

Thus, how should block copolymers between styrene and a vinyl ether be prepared Starting with styrene or with a vinyl ether In the former system, the propagating styryl cation is intrinsically more reactive but present at much lower concentration. A rough estimate of the ratio of cation reactivities is = 103 but the ratio of carbocations concentrations is = I0 S. Thus, the ratio of apparent rate constants of addition is 10-2. Macromolecular species derived from styrene should add to a standard alkene one hundred times slower than those derived from vinyl ethers. Thus, one cross-over reaction St - VE will be accompanied by =100 homopropagation steps VE - VE. Therefore, in addition to a small amount of block copolymer, a mixture of two homopolymers will be formed. Blocking efficiency should be very low, accordingly. [Pg.362]

To be able to prepare and study these elusive species in stable form, acids billions of times stronger than concentrated sulfuric acid were needed (so called superacids). Some substituted carbocations, however, are remarkably stable and are even present in nature. You may be surprised to learn that the fine red wine we drank tonight contained carbocations which are responsible for the red color of this natural 12% or so alcoholic solution. I hope you enjoyed it as much as I did. [Pg.183]

Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that form tertiary carbocations In some cases reaction conditions can be developed that favor the formation of higher molecular weight polymers Because these reactions proceed by way of carbocation intermediates the process is referred to as cationic polymerization We made special mention m Section 5 1 of the enormous volume of ethylene and propene production in the petrochemical industry The accompanying box summarizes the principal uses of these alkenes Most of the ethylene is converted to polyethylene, a high molecular weight polymer of ethylene Polyethylene cannot be prepared by cationic polymerization but is the simplest example of a polymer that is produced on a large scale by free radical polymerization... [Pg.267]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

The rate of addition depends on the concentration of both the butylene and the reagent HZ. The addition requires an acidic reagent and the orientation of the addition is regioselective (Markovnikov). The relative reactivities of the isomers are related to the relative stabiUty of the intermediate carbocation and are isobutylene 1 — butene > 2 — butenes. Addition to the 1-butene is less hindered than to the 2-butenes. For hydrogen bromide addition, the preferred orientation of the addition can be altered from Markovnikov to anti-Markovnikov by the presence of peroxides involving a free-radical mechanism. [Pg.363]

The triarylmethyl cations are particularly stable because of the conjugation with the aryl groups, which delocalizes the positive charge. Because of their stability and ease of generation, the triarylmethyl cations have been the subject of studies aimed at determining the effect of substituents on carbocation stability. Many of these studies used the characteristic UV absorption spectra of the cations to determine their concentration. In acidic solution, equilibrium is established between triarylearbinols and the corresponding carbocations. [Pg.277]

In summary, it appears friat bromination usually involves a charge-transfer complex which collapses to an ion-pair intermediate. The cation can be a carbocation, as in the case of styrenes, or a bromonium ioiL The complex can evidently also be captured by bromide ion when it is present in sufficiently high concentration. [Pg.366]

Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary. Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary.
Dimerization in concentrated sulfuric acid occurs mainly with those alkenes that fonn tertiary carbocations. In some cases reaction conditions can be developed that favor the formation of higher molecular-weight polymers. Because these reactions proceed by way of carbocation intermediates, the process is refened to as cationic polymerization. [Pg.267]

The first step, which is rate determining, is an ionization to a carbocation (carbonium ion in earlier terminology) intermediate, which reacts with the nucleophile in the second step. Because the transition state for the rate-determining step includes R-X but not Y , the reaction is unimolecular and is labeled S l. First-order kinetics are involved, with the rate being independent of the nucleophile identity and concentration. [Pg.427]

Either concentrated sulfuric acid or anhydrous hydrofluoric acid is used as a catalyst for the alkylation reaction. These acid catalysts are capable of providing a proton, which reacts with the olefin to form a carbocation. For example, when propene is used with isohutane, a mixture of C5 isomers is produced. The following represents the reaction steps ... [Pg.86]

Aromatic rings can be nitrated by reaction with a mixture of concentrated nitric and sulfuric acids. The electrophile is the nitronium ion, N02+, which is generated from HNO3 by protonation and loss of water. The nitronium ion reacts with benzene to yield a carbocation intermediate, and loss of H+ from this intermediate gives the neutral substitution product, nitrobenzene (Figure 16.4). [Pg.551]

The same is true in a two-step reaction. If the first step is slow and the second step is fast, then the speed of the second step is irrelevant. The rate of product formation will depend only on the rate of the first step (the slow step). So in our 8 1 reaction, the first step is the slow step (loss of the LG to form the carbocation) and the second step is fast (nucleophile attacking the carbocation). Just as we saw in the hourglass, the second step of our mechanism will not affect the rate of the reaction. Notice that the nucleophile does not appear in the mechanism until the second step. If we added more nucleophile, it would not affect the rate of the first step. Adding more nucleophile would only speed up the second step. But we already saw that the rate of the second step does not matter for the overall reaction rate. Speeding up the second step will not change anything. So the concentration of nucleophile does not affect the rate of the reaction. [Pg.211]

Considering the long saga of hydrocarbon chemistry, it is surprising that two new classes of hydrocarbon - ionically dissociative hydrocarbons and hydrocarbon salts - have been discovered in the last decade. The syntheses of authentic samples as analytically pure solids have revealed the very existence of such novel hydrocarbons in an unquestionable way, but the investigation of their basic features is just in the inchoate stage. The search for such novel hydrocarbons depends primarily on the synthesis and examination of highly stabilized hydrocarbon cations and anions. As mentioned above, until now such elaboration has been concentrated on the carbocation side, and examination of the carbanion moiety has only just started. [Pg.216]

When a positive charge is carried on carbon the entity is known as a carbocation, and when a negative charge, a carbanion. Though such ions may be formed only transiently and be present only in minute concentration, they are nevertheless often of paramount importance in controlling the reactions in which they participate. [Pg.21]

The reaction can, however, be made preparative for (91) by a continuous distillation/siphoning process in a Soxhlet apparatus equilibrium is effected in hot propanone over solid Ba(OH)2 (as base catalyst), the equilibrium mixture [containing 2% (91)] is then siphoned off. This mixture is then distilled back on to the Ba(OH)2, but only propanone (b.p. 56°) will distil out, the 2% of 2-methyl-2-hydroxypentan-4-one ( diacetone alcohol , 91, b.p. 164°) being left behind. A second siphoning will add a further 2% equilibrium s worth of (91) to the first 2%, and more or less total conversion of (90) — (91) can thus ultimately be effected. These poor aldol reactions can, however, be accomplished very much more readily under acid catalysis. The acid promotes the formation of an ambient concentration of the enol form (93) of, for example, propanone (90), and this undergoes attack by the protonated form of a second molecule of carbonyl compound, a carbocation (94) ... [Pg.225]

Values of Kadd for the addition of water (hydration) of alkenes to give the corresponding alcohols. These equilibrium constants were obtained directly by determining the relative concentrations of the alcohol and alkene at chemical equilibrium. The acidity constants pATaik for deprotonation of the carbocations by solvent are not reported in Table 1. However, these may be calculated from data in Table 1 using the relationship pA ik = pATR + logA dd (Scheme 7). [Pg.84]

Studies reveal an advantage to using boron trifluoride in dichloromethane at reduced temperatures instead of Brpnsted acids in the organosilicon hydride reductions of a number of dialkylbenzyl alcohols.126 129 The use of Brpnsted acids may be unsatisfactory under conditions in which the starting alcohol suffers rapid skeletal rearrangement and elimination upon contact with the acid, and also in which the alcohol does not yield a sufficient concentration of the intermediate carbocation when treated with protic acids.126... [Pg.21]

The proanthocyanidin assay is carried out in a solution of butanol-concentrated hydrochloric acid, where proanthocyanidins (condensed tannins) are converted to antho-cyanidins (products of autoxidation of carbocations formed by cleavage of interfla-vanoid bonds) (Matus-Cadiz and others 2008). [Pg.65]


See other pages where Carbocation concentration is mentioned: [Pg.114]    [Pg.114]    [Pg.38]    [Pg.64]    [Pg.277]    [Pg.224]    [Pg.299]    [Pg.413]    [Pg.436]    [Pg.473]    [Pg.700]    [Pg.1379]    [Pg.122]    [Pg.535]    [Pg.536]    [Pg.536]    [Pg.445]    [Pg.217]    [Pg.234]    [Pg.72]    [Pg.429]    [Pg.429]    [Pg.76]    [Pg.80]    [Pg.891]    [Pg.20]    [Pg.23]    [Pg.16]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



© 2024 chempedia.info