Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenoids palladium, formation

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

The stereospecific insertion of 2-monosubstituted alkenyl carbenoids was successfully employed in the preparation of 1-alkyl-1-zircono-dienes. The Z and E carbenoids of 1-chloro-l-lithio-l,3-butadiene (69 and 70, respectively) are generated in situ fromE- andZ-l,4-dichloro-2-butene [53] (Scheme 25). Inversion of configuration at the carbenoid carbon during the 1,2-metalate rearrangement stereospecifically yields terminal dienyl zirconocenes 71 and 72 [54] (Scheme 25). As the carbenoid-derived double bond is formed in 9 1=Z E for 69 and >20 1=E Z isomeric mixtures for 70, the metalated dienes 71 and 72 are expected to be formed with the same isomeric ratio. Carbon-carbon bond formation was achieved by palladium-catalyzed cross-coupling with allyl or vinyl halides to give the functionalized products with >95 5 stereopurity [55-57]. [Pg.146]

As already mentioned for rhodium carbene complexes, proof of the existence of electrophilic metal carbenoids relies on indirect evidence, and insight into the nature of intermediates is obtained mostly through reactivity-selectivity relationships and/or comparison with stable Fischer-type metal carbene complexes. A particularly puzzling point is the relevance of metallacyclobutanes as intermediates in cyclopropane formation. The subject is still a matter of debate in the literature. Even if some metallacyclobutanes have been shown to yield cyclopropanes by reductive elimination [15], the intermediacy of metallacyclobutanes in carbene transfer reactions is in most cases borne out neither by direct observation nor by clear-cut mechanistic studies and such a reaction pathway is probably not a general one. Formation of a metallacyclobu-tane requires coordination both of the olefin and of the carbene to the metal center. In many cases, all available evidence points to direct reaction of the metal carbenes with alkenes without prior olefin coordination. Further, it has been proposed that, at least in the context of rhodium carbenoid insertions into C-H bonds, partial release of free carbenes from metal carbene complexes occurs [16]. Of course this does not exclude the possibility that metallacyclobutanes play a pivotal role in some catalyst systems, especially in copper-and palladium-catalyzed reactions. [Pg.797]


See other pages where Carbenoids palladium, formation is mentioned: [Pg.129]    [Pg.137]    [Pg.461]    [Pg.129]    [Pg.435]    [Pg.480]    [Pg.71]    [Pg.144]    [Pg.795]    [Pg.124]    [Pg.195]    [Pg.250]    [Pg.363]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Carbenoid

Carbenoids

Carbenoids formation

© 2024 chempedia.info