Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes Dihalocarbenes

Much of the literature regarding dihalocarbenes is concerned with reactions of CX2 with olefinic substrates to give 1,1-dihalocyclopropane derivatives. These reactions occur with retention of stereospecificity, as expected for singlet carbenes. Dihalocarbenes also exhibit strong electrophilic behavior towards olefins, and will often not react with weakly nucleophilic species if stronger nucleophiles are present. [Pg.9]

In dihalocarbene generation by phase-transfer catalysis the following steps seem to be involved (15) formation of CX anions dynamically anchored at the boundary reversible detachment with the help of the catalyst reversible carbene formation [Q+ CX3 ] [Q + X ] + CX2 addition to olefin. [Pg.189]

Carbene Reactions. The best procedure for preparing dihalocarbene adducts of olefins consists in stirring a haloform—methylene chloride solution with an excess of concentrated aqueous caustic soda in the presence of hen 2y1triethy1 amm onium chloride. Even stericahy hindered and electronically deactivated compounds give excellent yields (32). Mixed dihalocarbenes, CXY (X,Y = E, Cl, Br, I), except for CE2, can be prepared. [Pg.189]

In this review an attempt is made to discuss all the important interactions of highly reactive divalent carbon derivatives (carbenes, methylenes) and heterocyclic compounds and the accompanying molecular rearrangements. The most widely studied reactions have been those of dihalocarbenes, particularly dichlorocarbene, and the a-ketocarbenes obtained by photolytic or copper-catalyzed decomposition of diazo compounds such as diazoacetic ester or diazoacetone. The reactions of diazomethane with heterocyclic compounds have already been reviewed in this series. ... [Pg.57]

The only known reaction of a furan with a dihalocarbene is that recently reported between benzofuran and dichlorocarbene in hexane at 0°. The initial adduct (7) could not be isolated but on hydrolysis gave the ring-expanded product 8, possibly via 9, in 15% yield. Benzothiophene was recovered in 92% yield under the same conditions. 2,5-Dihydrofuran reacted with dichloro- and dibromo-carbene to give the products of allylic insertion, 2-dihalogenomethyl-2,5-dihydrofuran, as well as the normal addition products. ... [Pg.64]

More useful for synthetic purposes, however, is the combination of the zinc-copper couple with methylene iodide to generate carbene-zinc iodide complex, which undergoes addition to double bonds exclusively to form cyclopropanes (7). The base-catalyzed generation of halocarbenes from haloforms (2) also provides a general route to 1,1-dihalocyclopropanes via carbene addition, as does the nonbasic generation of dihalocarbenes from phenyl(trihalomethyl)mercury compounds. Details of these reactions are given below. [Pg.116]

Seyferth (7) discovered that phenyl(trihalomethyl)mercury compounds decompose when heated in a solvent giving dihalocarbenes. When the solvent contains a suitable olefin, carbene addition occurs giving 1,1-dihalocyclopropane derivatives. The reaction has the advantage that strong base is not required in the reaction mixture, and base-... [Pg.119]

Carbenes and substituted carbenes add to double bonds to give cyclopropane derivatives ([1 -f 2]-cycloaddition). Many derivatives of carbene (e.g., PhCH, ROCH) ° and Me2C=C, and C(CN)2, have been added to double bonds, but the reaction is most often performed with CH2 itself, with halo and dihalocarbenes, " and with carbalkoxycarbenes (generated from diazoacetic esters). Alkylcarbenes (HCR) have been added to alkenes, but more often these rearrange to give alkenes (p. 252). The carbene can be generated in any of the ways normally used (p. 249). However, most reactions in which a cyclopropane is formed by treatment of an alkene with a carbene precursor do not actually involve free carbene... [Pg.1084]

Dihalocarbene complexes are useful precursors to new carbenes by nucleophilic displacement of the chlorine substituents. This has been nicely illustrated for Fe(TPP)(=CCl2) by its reaction with two equivalents of Re(CO)5J to give the unusual /t-carbido complex Fe(TPP)=C=Re(CO)4Re(CO)5 which also contains a rhenium-rhenium bond. " The carbido carbon resonance was observed at 211.7 ppm in the C NMR spectrum. An X-ray crystal structure showed a very short Fe=C bond (1.605(13) A, shorter than comparable carbyne complexes) and a relatively long Re=C bond (1.957( 12) A) (Fig. 4, Table III). " ... [Pg.260]

Before our studies, high temperatures (>600°C) had usually been used to generate dichlorocarbene in the gas phase. Based on trapping experiments we have shown that the trihalomethyl mercury derivatives RHgCHals, which were successfully used earlier as sources of dihalocarbenes in solution (Seyferth, 1972), are also convenient precursors of carbenes in the gas phase (Mal tsev etaL, 1971a,b). [Pg.8]

The preference for formation of dihalocarbenes (but not the trihalomethyl radicals) upon thermolysis of trihalomethyl mercury, silicon and germanium derivatives seems to be a result of intermolecular coordination, of type [1], and of a thermodynamic preference for the carbene-forming pathway. The... [Pg.10]

Independently Volpin17 synthesized diphenyl cyclopropenone from diphenyl-acetylene and dibromo carbene (CHBr3/K-tert.-butoxide). This reaction principle of (2 + 1) cycloaddition of dihalocarbenes or appropriate carbene sources ( caibenoids ) to acetylenic triple bonds followed by hydrolysis was developed to a general synthesis... [Pg.12]

Trichloromethyl lithium (generated from BrCCl3 and CH3Li at —100 °C) adds to dialkyl acetylenes and to monoalkyl acetylenes23, thus monoalkyl cyclopropenones became accessible which could not be obtained from terminal acetylenes by reaction with the above carbene sources. The 3,3-dihaIogeno-A1,2-cycIopropenes formed as primary products in the dihalocarbene reactions are usually not isolated, but are hydrolyzed directly to cyclopropenones. [Pg.13]

The advantages of this method of carbene synthesis are that reaction can be carried out in neutral solution, and that reaction yields are often dramatically improved. Thus, although reactions of dihalocarbenes generally do not give rise to products corresponding to single bond insertion, Seyferth has reported insertion of phenyl (trihalomethyl) mercury-generated carbenes into... [Pg.9]

As noted with the reactions between terpenes and dihalocarbenes, mono-insertion adducts at the more electron-rich sites can be isolated from the reaction of non-conju-gated acyclic and cyclic dienes although, depending on the reaction conditions, the bis-adducts may also be formed. Norbomadiene produces both 1,2-endo and 1,2-exo mono-insertion adducts with dichlorocarbene, as well as a 1,4-addition product (Scheme 7.4) [67]. The mono adduct produced from the reaction with dimethylvinylidene carbene rearranges thermally to yield the ring-expanded product (Scheme 7.4) [157] a similar ring-expanded product is produced with cyclo-hexylidene carbene [149]. [Pg.321]

Conjugated dienes yield mono-adducts with dihalocarbenes at the more electron-rich C=C bond further reaction at the less reactive bond may also occur [e.g. 4,8,19, 23, 31, 37, 49, 62, 69, 94]. Cycloheptatriene yields the syn- and nnti-1,2 5,6-bis-adducts (14.5 and 22.9%) and the syn-1,2 5,6-ann -3,4-tris-adduct with dichloro-carbene [62], The facile reaction of cyclopropylethenes with dihalocarbenes produces dicyclopropyl compounds [53, 117]. Isoprene reacts with chloro(phenylthio)carbene across the more reactive 1,2-bond (51%) [146]. [Pg.322]

Alkynes tend to be much less reactive than alkenes. For example, 1,2-diphenylethyne produces only 23% of the dichlorocyclopropene from its reaction with dichlorocarbene, compared with 96% of the dichlorocyclopropane obtained from rrans-stilbene under analogous conditions [4]. Conjugated eneynes react preferentially at the C=C bond with dihalocarbenes [18-20, 22, 38] and with dimethylvinylidene carbene [158],... [Pg.322]

Although the C=C bond of allyl alcohols is frequently less susceptible to reaction with dihalocarbenes, insertion of the carbene into the C=C bond invariably occurs (Table 7.4) to the exclusion of reaction at the hydroxyl group (see Section 7.5) [98]. A complex mixture of products is obtained from the reaction of dichlorocarbene with allyl alcohol, but the cyclopropane can be obtained in high overall yield (>70%) via... [Pg.322]

Acyclic and cyclic allylic ethers and acetals react normally with dihalocarbenes at the C=C bond [e.g. 77, 85, 108,114,121,122], Carbene insertion into the C=C bond of allylic ketones, which can be complicated by competitive reaction by the carbonyl group, can also be effected via the initial formation of the acetal and has been used in the synthesis of cyclonona-3,4- and -4,5-dienones from cyclooctenones [125],... [Pg.323]

Addition of carbenes to Jt-electron excessive aromatic compounds, or those which possess a high degree of bond fixation, is well established. Dihalocarbenes react with naphthalenes with ring expansion to produce benztropylium systems (Scheme 7.8). Loss of hydrogen halide from the initially formed product leads to an alkene which reacts with a second equivalent of the carbene to yield the spirocyclopropyl derivatives in high yield (>95%) [14, 50]. Insertion into the alkyl side chain (see Section 7.2) also occurs, but to a lesser extent [14]. Not unexpectedly, dichlorocarbene adds to phenanthrenes across the 9,10-bond [9, 10, 14], but it is remarkable that the three possible isomeric spiro compounds could be isolated (in an overall yield of 0.05% ) from the corresponding reaction with toluene [14]. [Pg.324]

The second conclusion which may be drawn from Hoffmann s calculations so>56) is that carbenes having substituents with vacant orbitals interacting with the -orbital should be electrophilic, whereas the interaction with substituents with filled orbitals should result in nucleophilic behaviour. There is experimental proof 57) to the effect that singlet Ccirbenes such as dihalocarbenes with their empty -orbital react as electrophiles. [Pg.97]

At the HF/6-31G level, ketenyl carbenes (1) were calculated to be intermediates in the decarbonylation of 1,2-bisketenes (2) to form cyclopropenones." At the MP2/6-31G and B3LYP levels, however, decarbonylation was predicted to form the cyclopropenones directly. The anfi-ketenyl carbenes were found to be 2.2-5.4kcalmoP higher in energy than the syn isomers (1). The mechanism of reaction of [l.l.ljpropellane with singlet dihalocarbene has been reported. ... [Pg.253]

Ab initio and RRKM calculations indicate that the reactions of C, CH, and (H2C ) with acetylene occur with no barrier." Laser flash photolysis of the cyclopropanes (69) and (70) was used to generate the corresponding dihalocarbenes. The absolute rate constant for the formation of a pyridine ylide from Br2C was (4-11) x 10 lmoP s. The rates of additions of these carbenes to alkenes were measured by competition with pyridine ylide formation and the reactivity of BrClC was found to resemble that of Br2C rather than CI2C . [Pg.262]

Reaction of norbornane trithiolane (24) with both dichloro- and dibromocarbene afforded the trithiocarbonate (94), which upon further reaction with the dihalocarbene yielded the corresponding dithiocarbonate <90JOC1146>. The mechanism of formation of (94) from (24) is postulated to proceed by addition of the carbene to S-2 of the trithiolane, followed by a ring-expansion reduction sequence as outlined in Scheme 22. [Pg.569]


See other pages where Carbenes Dihalocarbenes is mentioned: [Pg.345]    [Pg.367]    [Pg.362]    [Pg.345]    [Pg.367]    [Pg.362]    [Pg.88]    [Pg.177]    [Pg.61]    [Pg.251]    [Pg.1087]    [Pg.245]    [Pg.117]    [Pg.290]    [Pg.122]    [Pg.169]    [Pg.175]    [Pg.766]    [Pg.317]    [Pg.317]    [Pg.332]    [Pg.88]    [Pg.177]    [Pg.200]    [Pg.869]   
See also in sourсe #XX -- [ Pg.431 ]




SEARCH



Carbene complexes dihalocarbene

Dihalocarbene

Dihalocarbenes

© 2024 chempedia.info