Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene formation, photochem

Carbene formation was mentioned in an earlier section. This elimination of HCl from 4-chlorophenol or elimination of other hydrogen halides from halophenols could have been inferred from earlier photochemical studies on this and other derivatives. Boule and his coworkers irradiated 4-chlorophenol under deoxygenated conditions and obtained the corresponding quinhydrone and the 2,4 -dihydroxy-5-chlorobiphenyl °. Other research demonstrated that its irradiation in neutral aqueous solutions gave the corresponding quinone " and also that de-aeration did not seem to affect the reaction. ... [Pg.1072]

There are a series of photochemical investigations in which product ratios indicate that, in some cases, it is neither the singlet nor the triplet carbene in their ground states that forms certain products with a given substrate. The results indicate that photoexcited diazo compounds or carbenes in excited states may react. Evidence for such mechanisms came hitherto only from product studies, some of these cases will be mentioned only in the sections on the corresponding products. Potential reactive intermediates in carbene formation are summarized in Scheme 8-11. The latter includes the excited singlet and triplet carbenes, as well as the formation of triplets by triplet sensitizers such as benzophenone or thioxanthone ( Sens) and the direct formation of products from the excited diazo compound with the substrate S . Product... [Pg.317]

Until the last decade, product studies formed the main evidence for carbene formation singlet carbenes formed cyclopropanes from alkenes stereospecifically, while triplet carbenes formed cyclopropanes non-stereospecifically. Formation of a cyclopropane (though not by addition to an alkene) via a carbocation route was demonstrated and, more recently, it has been shown that p values for insertion-addition selectivity and for cyclopropanation stereoselectivity vary as to photochemical or thermal generation of the carbene. The authors of this latter study suggest that a ground state diazo compound could be masquerading as a carbene in its thermal reaction with olefins, possibly by electrocyclic... [Pg.548]

Sol 3. (d) Diazo compounds liberate the free carbenes under photochemical conditions that are in singlet states. This process can be directed toward the formation of a triplet carbene using a triplet sensitizer like benzophenone. For triplet carbenes, the aUcene insertion reaction is nonstereospecific. Therefore, the reaction of Z-but-2-ene with triplet carbene gives a mixture of cisHrans-1,2-dimethylcyclopropane. [Pg.235]

In all cases the formation of carbenes was accompanied by partial photoisomerization of the precursor diazirines [53] into the corresponding diazo compounds [55] which possess a higher photochemical stability than the diazirines. [Pg.20]

The IR and UV spectra of the triplet cycloheptatrienylidene [71] were recorded after the UV photolysis (A>574 nm) of diazocycloheptatriene [72] in an argon matrix (McMahon and Chapman, 1986). This carbene interacts with the CO-doped matrix, forming the ketene [73], and it also dimerizes with formation of heptafulvalene [74]. Experiments have shown that [71] cannot be converted into the cycloheptatetraene [48] either photochemically... [Pg.23]

Carbenes from Sulfonylhydrazones. The second method listed in Scheme 10.8, thermal or photochemical decomposition of salts of arenesulfonylhy-drazones, is actually a variation of the diazoalkane method, since diazo compounds are intermediates. The conditions of the decomposition are usually such that the diazo compound reacts immediately on formation.147 The nature of the solvent plays an important role in the outcome of sulfonylhydrazone decompositions. In protic solvents, the diazoalkane can be diverted to a carbocation by protonation.148 Aprotic solvents favor decomposition via the carbene pathway. [Pg.913]

Interaction of an electrophilic carbene or carbenoid with R—S—R compounds often results in the formation of sulfonium ylides. If the carbene substituents are suited to effectively stabilize a negative charge, these ylides are likely to be isolable otherwiese, their intermediary occurence may become evident from products of further transformation. Ando 152 b) has given an informative review on sulfonium ylide chemistry, including their formation by photochemical or copper-catalyzed decomposition of diazocarbonyl compounds. More recent examples, including the generation and reactions of ylides obtained by metal-catalyzed decomposition of diazo compounds in the presence of thiophenes (Sect. 4.2), allyl sulfides and allyl dithioketals (Sect. 2.3.4) have already been presented. [Pg.211]

This chapter has to do with reactions wherein the photochemical event is the breaking of a bond in a molecule. For a single bond this results in the formation of a pair of radicals or a diradical. For a double bond as in diazo compounds or in azides a carbene or a nitrene and nitrogen are formed. All these intermediates will then undergo further mono- or bi-molecular dark reactions or eventually recombine to ground state starting materials. [Pg.20]

The initial photochemical step in almost all of the reactions described in this chapter is formation of either trivalent radicals of the type R3E-, or else the divalent analogues of carbenes, R2E . Such species are obviously very reactive, and are only observed as intermediates or in experiments in the presence of trapping agents. The relative stability of the intermediates depends greatly on the nature of the substituents R, and this can influence the type of reaction products ultimately formed. Where appropriate, comparisons with the behaviour of the analogous silicon species are made. [Pg.724]

The reaction of carbenes 1, generated either thermally or photochemically from the corresponding quinone diazides 2, with pyridine results in the formation of the deeply colored betaines which can be isolated in substance from the reaction mixture.73,62 This alternative synthesis of the betaines opens a general route to pyridine ylides unsubstituted at the pyridine ring. [Pg.179]

Compared to the parent system 3a, the barrier for formation of 3d is the highest in this series whereas the formation of 3b should be the most facile according to our computations. Although the reactions of carbenes la-c are initiated photochemically, the observed reactivity seems to be in line with the computed ground state properties. Thus, while methyl substitution in 3-and 5-position inhibits the vinylcarbene-cyclopropene rearrangement, methyl substitution in 2- and 6-position has the opposite effect. [Pg.181]

Halogen substitution is expected to increase the electrophilicity of the carbenes, and in particular lh with four fluorine substituents is expected to be highly electrophilic and of unusual reactivity. All the carbenes le-g could be matrix-isolated by irradiation of their corresponding quinone diazides 2 in argon at 8-10 K.24 68,62 Again, the thermal reaction in (Vdoped matrices results in the formation of quinone oxides 7, which show the expected photochemical rearrangement to the spiro dioxiranes 8 and finally lactones 9. [Pg.183]

Dehydrophenol 20i is a tautomeric form of carbene la, and a [1,3]-H migration should in principal interconvert these species. However, under the conditions of matrix isolation the benzynes 201—1 are thermally and photochemically stable towards rearrangement to the corresponding carbenes. UV irradiation of 20i results in a ring-opening and formation of so far unidentified acetylenic products. [Pg.189]

Carbene lv is photolabile, and 400 nm irradiation produces a mixture of products.108 By comparison with calculated IR spectra the major product was identified as cyclopropene 3v. The formation of 3v is irreversible, and it cannot be thermally (by annealing the matrix) nor photochemically converted back to carbene lv. The lv -> 3v rearrangement is calculated (B3LYP/6-31G(d) + ZPE) to be endothermic by only 5.4 kcal/mol with an activation barrier of 18.2 kcal/mol. Due to the two Si-C bonds in the five-membered ring of 3v this cyclopropene is less strained than 3s, which is reflected by the smaller destabilization relative to carbene lv. The thermal energy available at temperatures below 40 K is much too low to overcome the calculated barrier of 12.8 kcal/mol for the rearrangement of 3v back to lv, and consequently 3v is stable under the conditions of matrix isolation. [Pg.197]

The photolysis or thermolysis of diazo compounds results in the formation of carbenes. These reactions were identified as early as 1901 by Hantzsch and Lehmann D and Staudinger and Kupfer who decomposed diazomethane photochemically and thermally, respectively. The subsequent work of Hine 3) and Doering ) started the era of carbene chemistry. Excellent reviews of the chemistry of carbenes are available 5-27),... [Pg.88]

Alkynes react readily with a variety of transition metal complexes under thermal or photochemical conditions to form the corresponding 7t-complexes. With terminal alkynes the corresponding 7t-complexes can undergo thermal or chemically-induced isomerization to vinylidene complexes [128,130,132,133,547,556-569]. With mononuclear rj -alkyne complexes two possible mechanisms for the isomerization to carbene complexes have been considered, namely (a) oxidative insertion of the metal into the terminal C-Fl bond to yield a hydrido alkynyl eomplex, followed by 1,3-hydrogen shift from the metal to Cn [570,571], or (b) eoneerted formation of the M-C bond and 1,2-shift of H to Cp [572]. [Pg.98]

Both thermal (120 °C at 0.005r) and photochemical decomposition of the tosylhy-drazone salt (21) were proposed to proceed by initial formation of the cyclopropyl-carbene followed by fragmentation to biradicals (22) and (23), which proceeded to 1- and 2-vinylnaphthalene and benzobarrelene (24). ... [Pg.256]

Reaction of diazo compounds with a variety of transition metal compounds leads to evolution of nitrogen and formation of products of the same general type as those formed by thermal and photochemical decomposition of diazoalkanes. These transition metal-catalyzed reactions in general appear to involve carbenoid intermediates in which the carbene becomes bound to the metal.83 The metals which have been used most frequently in synthesis are copper and rhodium. [Pg.622]


See other pages where Carbene formation, photochem is mentioned: [Pg.134]    [Pg.106]    [Pg.813]    [Pg.443]    [Pg.132]    [Pg.443]    [Pg.689]    [Pg.23]    [Pg.292]    [Pg.92]    [Pg.267]    [Pg.2273]    [Pg.178]    [Pg.575]    [Pg.307]    [Pg.25]    [Pg.2]    [Pg.144]    [Pg.912]    [Pg.143]    [Pg.31]    [Pg.131]    [Pg.189]    [Pg.320]    [Pg.118]    [Pg.74]    [Pg.108]    [Pg.435]    [Pg.622]    [Pg.641]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Carbene formation

Carbenes formation

Formation photochemical

© 2024 chempedia.info