Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene complexes with cobalt porphyrins

One-electron oxidation of the vinylidene complex transforms it from an Fe=C axially symmetric Fe(ll) carbene to an Fe(lll) complex where the vinylidene carbon bridges between iron and a pyrrole nitrogen. Cobalt and nickel porphyrin carbene complexes adopt this latter structure, with the carbene fragment formally inserted into the metal-nitrogen bond. The difference between the two types of metalloporphyrin carbene, and the conversion of one type to the other by oxidation in the case of iron, has been considered in a theoretical study. The comparison is especially interesting for the iron(ll) and cobalt(lll) carbene complexes Fe(Por)CR2 and Co(Por)(CR2) which both contain metal centers yet adopt... [Pg.245]

The preparation of cyclopropanes by intermolecular cyclopropanation with acceptor-substituted carbene complexes is one of the most important C-C-bond-forming reactions. Several reviews [995,1072-1074,1076,1077,1081] and monographs have appeared. In recent decades chemists have focused on stereoselective intermolecular cyclopropanations, and several useful catalyst have been developed for this purpose. Complexes which catalyze intermolecular cyclopropanations with high enantiose-lectivity include copper complexes [1025,1026,1028,1029,1031,1373,1398-1400], cobalt complexes [1033-1035], ruthenium porphyrin complexes [1041,1042,1230], C2-symmetric ruthenium complexes [948,1044,1045], and different types of rhodium complexes [955,998,999,1002-1004,1010,1062,1353,1401-1405], Particularly efficient catalysts for intermolecular cyclopropanation are C2-symmetric cop-per(I) complexes, as those shown in Figure 4.20. These complexes enable the formation of enantiomerically enriched cyclopropanes with enantiomeric excesses greater than 99%. Illustrative examples of intermolecular cyclopropanations are listed in Table 4.24. [Pg.224]

Diazo compounds react with cobalt(II)-porphyrins, including [Co (Pl)] to give complexed carbenes (Figure 4.12). These can then undergo carbonylation by addition of carbon monoxide, with in situ capture of the ketenes by nucleophiles, or with imines forming PTactams (Eqn (4.45)). ... [Pg.263]

These derivatives (Type B) are at least formally prepared by the insertion of a fragment into a M-N bond to yield a new M-X-N unit. Such species have been suggested as possible intermediates in the insertion of an oxygen atom into a G-H bond by cytochrome P-450. Several of these derivatives have formally had a carbene fragment inserted into a M-N bond. Such derivatives include a Ni derivative and a cobalt(III) species that has undergone two such insertion reactions. Other species represent the formal reaction of a vinylidene with iron(III) (two different crystalline forms). This iron derivative has an intermediate-spin state. Other complexes result from the insertion of a nitrene or an oxene This last derivative can also be considered to be a porphyrin N-oxide derivative and the structure of a free base species of a porphyrin N-oxide has also been reported". Appropriate stereochemical parameters for the members of this class are found in Table IX. [Pg.15]

Further data have been reported on the reactions of cobalt(m) porphyrins with diazoalkanes as a route to vinyl- or halomethyl-cobalt(m) porphyrin complexes. The reaction pathway, involving probable insertion of an initially generated carbene fragment into the Co—N bond is also discussed. ... [Pg.439]

While major advances in the area of C-H functionalization have been made with catalysts based on rare and expensive transition metals such as rhodium, palladium, ruthenium, and iridium [7], increasing interest in the sustainability aspect of catalysis has stimulated researchers toward the development of alternative catalysts based on naturally abundant first-row transition metals including cobalt [8]. As such, a growing number of cobalt-catalyzed C-H functionalization reactions, including those for heterocycle synthesis, have been reported over the last several years to date (early 2015) [9]. The purpose of this chapter is to provide an overview of such recent advancements with classification according to the nature of the catalytically active cobalt species involved in the C-H activation event. Besides inner-sphere C-H activation reactions catalyzed by low-valent and high-valent cobalt complexes, nitrene and carbene C-H insertion reactions promoted by cobalt(II)-porphyrin metalloradical catalysts are also discussed. [Pg.319]

C-H alkylation and amination reactions involving metal-carbenoid and metal-nitrenoid species have been developed for many years, most extensively with (chiral) dirhodium(ll) carboxylate and carboxamidate complexes as catalysts [45]. When performed in intramolecular settings, such reactions offer versatile methods for the (enantioselective) synthesis of hetero- and carbocy-cles. In the past decade, Zhang and coworkers had explored the catalysis of cobalt(II)-porphyrin complexes for carbene- and nitrene-transfer reactions [46] and revealed a radical nature of such processes as a distinct mechanistic feature compared with typical metal (e.g., rhodium)-catalyzed carbenoid and nitrenoid reactions [47]. Described below are examples of heterocycle synthesis via cobalt(II)-porphyrin-catalyzed intramolecular C-H amination or C-H alkylation. [Pg.331]


See other pages where Carbene complexes with cobalt porphyrins is mentioned: [Pg.102]    [Pg.280]    [Pg.234]    [Pg.279]    [Pg.207]    [Pg.84]    [Pg.103]    [Pg.91]    [Pg.91]    [Pg.335]    [Pg.188]    [Pg.304]    [Pg.182]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 ]




SEARCH



Carbenes cobalt-complexes

Cobalt carbene complexes

Cobalt complexes, with

Cobalt porphyrin complex

Cobalt porphyrins

Porphyrin complexes

Porphyrin complexes with cobalt

With Carbenes

© 2024 chempedia.info