Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions radical anions

Obviously the structures and yields of Birch reduction products are determined at the two protonation stages. The ring positions at which both protonations occur are determined kinetically the first protonation or 7t-complex collapse is rate determining and irreversible, and the second protonation normally is irreversible under the reaction conditions. In theory, the radical-anion could protonate at any one of the six carbon atoms of the ring and each of the possible cyclohexadienyl carbanions formed subsequently could protonate at any one of three positions. Undoubtedly the steric and electronic factors discussed above determine the kinetically favored positions of protonation, but at present it is difficult to evaluate the importance of each factor in specific cases. A brief summary of some empirical and theoretical data regarding the favored positions of protonation follows. [Pg.17]

Reversible electron addition to the enone forms the radical anion. Rate determining protonation of the radical anion occurs on oxygen to afford an allylic free radical [Eq. (4b) which undergoes rapid reduction to an allylic carbanion [Eq. (4c)]. Rapid protonation of this ion is followed by proton removal from the oxygen of the neutral enol to afford the enolate ion [Eq. (4c)]. [Pg.29]

The reductive couphng of imines can follow different pathways, depending on the nature of the one-electron reducing agent (cathode, metal, low-valent metal salt), the presence of a protic or electrophihc reagent, and the experimental conditions (Scheme 2). Starting from the imine 7, the one-electron reduction is facihtated by the preliminary formation of the iminiiim ion 8 by protonation or reaction with an electrophile, e.g., trimethylsilyl (TMS) chloride. Alternatively, the radical anion 9 is first formed by direct reduction of the imine 7, followed by protonation or reaction with the electrophile, so giving the same intermediate a-amino radical 10. The 1,2-diamine 11 can be formed from the radical 10 by dimerization (and subsequent removal of the electrophile) or addition to the iminium ion 8, followed by one-electron reduction of the so formed aminyl radical. In certain cases/conditions the radical 9 can be further reduced to the carbanion 12, which then attacks the... [Pg.5]

An important synthetic application of this reaction is in dehalogenation of dichloro- and dibromocyclopropanes. The dihalocyclopropanes are accessible via carbene addition reactions (see Section 10.2.3). Reductive dehalogenation can also be used to introduce deuterium at a specific site. The mechanism of the reaction involves electron transfer to form a radical anion, which then fragments with loss of a halide ion. The resulting radical is reduced to a carbanion by a second electron transfer and subsequently protonated. [Pg.439]

When rationalizing the significant difference of the hydrocarbon- and ether-bridged radical anions, the main aspect will certainly be the conformation of the oxyethylene chain, which brings the electrophores into closer contact. An additional aspect follows from the ability of the oxygen centres along the chain to chelate the counterion and thus to fix the cation between the electrophores. It is not possible from the available experimental evidence to discriminate between the two effects. The role of ion pairing and the relative position of the counterion and carbanion will be dealt with below. [Pg.30]

In this type of polymerisation propagation is not by radical but by either a carbonium ion (in cationic polymerisations) or by a carbanion (in anionic polymerisations). In anionic polymerisation, termination does not take place unless we add a transfer agent. [Pg.234]

In the light of the success of the Birch conditions for reducing organic compounds it is not surprising that epoxides can be opened by solvated electrons [6-9]. The initially formed radical is then further reduced to give carbanionic species, which do not display the reactivity of radicals. This concept has been extended by Bartmann [10], Cohen et al. [11], Conrow [12], and Yus et al. [13,14] who employed aromatic radical anions as the reduc-... [Pg.52]

In electroorganic synthesis, radical ions preponderate as useful intermediates (Scheme la). Radical cations can, in subsequent deprotonations and further electron transfers (ET), be transformed into carbocations or vice versa as radical anions can be converted by protonation and further reduction into carbanions. Carbanions can also be generated by reductive cleavage of R-X (X = Cl, Br, I, OTos), and subsequent reduction of the intermediate radical R (Scheme Id). Radical anions can also be used as elec-trogenerated bases (ECBs, see Chapter 14) for the deprotonation of C-H bonds to form carbanions. [Pg.76]

Reactive donors can be generated ca-thodically by reductive cleavage of hahdes to carbanions or by reduction of double bonds to radical anions. Using these methods, two acceptors can be dimerized in one step by reductive Umpolung , for example, two molecules of acrylonitrile to adipodini-trile - a reaction, which normally needs two or more steps. [Pg.78]

Like the electrohydrodimerization and electrohydrocyclizahon reactions, this process also requires the consumphon of two electrons and two protons. It has been shown to occur via a sequence consisting of electron transfer followed by a ratedetermining protonation of the resulting radical anion, addihon of a second electron to generate a carbanion, cyclization of the carbanion onto the carbonyl acceptor unit and the addition of the second proton [16]. Carbon acids like dimethyl malonate and malononitrile are often used as a proton source. The course of this and other... [Pg.317]

In practice, reduction of 35 (—2.43 V vs SCE) in the presence of 3,5-dimethylphenol as a proton donor, tetra- -butylammonium hexafluorophos-phate as the supporting electrolyte, and DMF as the solvent, led to the y-hydroxy ester 40 and lactone 41 [22]. No sign of any material resulting from cyclization onto the alkene was detected. It was concluded that radical cyclization does not occur in this instance, and that the homogeneous electron transfer rate exceeds that of a 5-exo-trig radical cyclization, thereby implying the operation of either a radical anion or carbanion cyclization pathway. [Pg.10]

The radical anion pathway (e-c-P-d-p Scheme 2) requires a rate-determining protonation after cyclization, i.e., a slow protonation of a hard oxyanion. However, such proton transfer rates are usually diffusion controlled, so this seems unlikely [32,33], On the other hand, the carbanion closure (e-P-d-c-p) portrayed in Scheme 4 requires a very reasonable suggestion that the ratedetermining step corresponds to protonation of the soft, weakly basic radical anion 42, prior to cyclization [32-35] this is the preferred mechanism. One must use caution, however, realizing that these conclusions are drawn for the particular set of substrates which were examined. In some cases, radical anion cyclization remains a viable option. [Pg.11]

In these reactions (Scheme 3.1), the first electron addition is to the alkene giving a radical-anion. This interacts with the alkyl halide to transfer an electron, in a process driven by simultaneous cleavage of the carbon-halogen bond. The alkyl radical formed in this manner adds an alkene radical-anion [25]. Aluminium ions generated at the anode are essential to the overall process. They coordinate with the intermediate carbanion, which then interacts with the second halogen substituent in an Sn2 process to form the carbocycle. [Pg.57]

The radical-anions from from alkenes with electron withdrawing substituents will add to carbon dioxide [28]. This process involves the alkene radical-anion, which transfers an electron to carbon dioxide for which E° = -2.21 V vs. see [29]. Further reaction then occurs by combination of carbon dioxide and alkene radcal-anions [30]. The carbanion centre formed in this union may either be protonated or react with another molecule of carbon dioxide. If there is a suitable Michael acceptor group present, this carbanion undergoes an intramolecular addition reaction... [Pg.59]

The mechanism for intramolecular hydrocyclization of enecarboxylates was originally thought to involve nucleophilic addition of the enecarboxylate radical-anion onto the ketone function [26], A more recent suggestion is that a sequence of electron, proton, electron additions leads to the P-carbanion ... [Pg.79]

Reduction of benzenoid hydrocarbons with solvated electrons generated by the solution of an alkali metal in liquid ammonia, the Birch reaction [34], involves homogeneous electron addition to the lowest unoccupied 7t-molecular orbital. Protonation of the radical-anion leads to a radical intermediate, which accepts a further electron. Protonation of the delocalised carbanion then occurs at the point of highest charge density and a non-conjugated cyclohexadiene 6 is formed by reduction of the benzene ring. An alcohol is usually added to the reaction mixture and acts as a proton source. The non-conjugated cyclohexadiene is stable in the presence of... [Pg.243]

Radical additions to alkenes and aromatic systems are well known reactions. The trapping in this manner of radicals obtained by reduction of the aliphatic carbonyl function has proved to be a versatile electrochemical route for the formation of carbon-carbon bonds. Such reactions are most frequently carried out in protic solvents so that the reactive species is a o-radical formed by protonation of the carbonyl radical-anion. Tlie cyclization step must be fast in order to compete with further reduction of the radical to a carbanion at the electrode surface followed by protonation. Cyclization can be favoured and further reduction disfavoured by a... [Pg.344]

The radical-anion intermediates derived from aromatic imines behave as nucleophiles towards carbon dioxide, as with 48 [190,191]. Ibis nudeophic character is enhanced by reduction in the presence of chlorotrimethylsilane. A carbanion... [Pg.361]


See other pages where Carbanions radical anions is mentioned: [Pg.13]    [Pg.17]    [Pg.28]    [Pg.30]    [Pg.32]    [Pg.951]    [Pg.1059]    [Pg.1063]    [Pg.1068]    [Pg.233]    [Pg.951]    [Pg.1059]    [Pg.1063]    [Pg.1068]    [Pg.106]    [Pg.107]    [Pg.227]    [Pg.26]    [Pg.32]    [Pg.436]    [Pg.301]    [Pg.281]    [Pg.203]    [Pg.26]    [Pg.26]    [Pg.93]    [Pg.100]    [Pg.122]    [Pg.123]    [Pg.128]    [Pg.132]    [Pg.241]    [Pg.336]   
See also in sourсe #XX -- [ Pg.609 ]




SEARCH



Anions carbanion

© 2024 chempedia.info