Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions 3-nitrogen

Carbanion amido complexes, with Zr(IV), 4, 788 Carbanion nitrogen-donor complexes, with Zr(IV), 4, 788 Carbanions... [Pg.70]

Carbanion Nitrogen-donor [C, N] and Carbanion Amido [C, N ] Complexes... [Pg.788]

Oxazolium salts (11) are known to react with stabilized carbanions, nitrogen, oxygen, sulfur, and halogen at both the C-2 and C-5 positions. Reaction at the C-2 site results in the formation of... [Pg.219]

The mechanism of the reaction may involve the formation of an anion by the base B, followed by the shift of hydrogen on the hydrazone anion with simultaneous loss of nitrogen to yield a carbanion ... [Pg.511]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Preparative routes to aziridines and 1-azirines are derived from cycloelimination processes in which one, and sometimes two, bonds are formed directly to the nitrogen atom (Scheme 1). For aziridines these include the two intramolecular cyclization pathways involving either nucleophilic displacement by the amine nitrogen (or nitrenium anion) on the /3-carbon (route a) or nucleophilic displacement by a /3-carbanionic centre on the amine nitrogen... [Pg.80]

One of the more important approaches to 1-azirines involves a similar base-induced cycloelimination reaction of a suitably functionalized ketone derivative (route c. Scheme 1). This reaction is analogous to route (b) (Scheme 1) used for the synthesis of aziridines wherein displacement of the leaving group at nitrogen is initiated by a -carbanionic center. An example of this cycloelimination involves the Neber rearrangement of oxime tosylate esters (357 X = OTs) to 1-azirines and subsequently to a-aminoketones (358) (71AHC-(13)45). The reaction has been demonstrated to be configurationally indiscriminate both syn and anti ketoxime tosylate esters afforded the same product mixture of a-aminoketones... [Pg.82]

The nucleophilic attack of nitrogen bases leads to a variety of products as the result of addition or addition-elimination reactions The regioselectivity resembles that of attack by alcohols and alkoxides an intermediate carbanion is believed to be involved In the absence of protic reagents, the fluorocarbanion generated by the addition of sodium azide to polyfluonnated olefins can be captured by carbon dioxide or esters of fluonnated acids [J 2, 3] (equation I)... [Pg.742]

Amination of the deactivated carbanion of 4-benzylpyridine formed with excess sodamide presumably proceeds because the strong indirect deactivation is overcome by electrophilic attack by Na+ at the partially anionic azine-nitrogen and by concerted nucleophilic attack by H2N at the 2-position via a 6-membered cyclic transition state (75). However, in simple nucleophilic displacement a carbanion will be more deactivating than the corresponding alkyl group, as is true in general for anionic substituents and their non-ionic counterparts. [Pg.227]

The subsequent steps are a sequence of base-induced H-shifts to give the anionic species 5, from which loss of nitrogen (N2) leads to a carbanionic species 6. The latter is then protonated by the solvent to yield hydrocarbon 3 as the final product ... [Pg.303]

A 1.5 to 2 M solution of methylsulfinyl carbanion in dimethyl sulfoxide is prepared under nitrogen as above from sodium hydride and dry dimethyl sulfoxide. An equal volume of dry tetrahydrofuran is added and the solution is cooled in an ice bath during the addition, with stirring, of the ester (0.5 equivalent for each 1 equivalent of carbanion neat if liquid, or dissolved in dry tetrahydrofuran if solid) over a period of several minutes. The ice bath is removed and stirring is continued for 30 minutes. The reaction mixture is then poured into three times its volume of water, acidified with aqueous hydrochloric acid to a pH of 3-4 (pH paper), and thoroughly extracted with chloroform. The combined extracts are washed three times with water, dried over anhydrous sodium sulfate, and evaporated to yield the jS-ketosulfoxide as a white or pale yellow crystalline solid. The crude product is triturated with cold ether or isopropyl ether and filtered to give the product in a good state of purity. [Pg.94]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

The novel cyclizadon takes places by the silane-mediated condensadon of nitroarenes with allylic carbanions, in which a sLx-membered nitrogen-containing ting is constnicted fEq. 9.54. ... [Pg.318]

The ylides have been classified on the basis of the heteroalom covalently bonded to the carbanion. Accordingly, they can be differentiated into nitrogen ylide (Scheme 2), sulfur ylide Scheme 3, phosphorus ylide Scheme 4, arsenic ylide Scheme 5, antimony ylide (Scheme 6), bismuth ylide (Scheme 7) and thallium ylide (Scheme 8). [Pg.373]

The reaction of A-acyliminium ions with nucleophilic carbon atoms (also called cationic x-amidoalkylation) is a highly useful method for the synthesis of both nitrogen heterocycles and open-chain nitrogen compounds. A variety of carbon nucleophiles can be used, such as aromatic compounds, alkcncs, alkyncs, carbcnoids, and carbanions derived from active methylene compounds and organometallics. [Pg.803]

In accordance with the electropositive nature of the bridgehead atoms, all di(pyridyl) substituted anions behave like amides with the electron density accumulated at the ring nitrogen atoms rather than carbanions, phosphides or arsenides. The divalent bridging atoms (N, P, As) in the related complexes should in principle be able to coordinate either one or even two further Lewis acidic metals to form heterobimetallic derivatives. According to the mesomeric structures, (Scheme 7), it can act as a 2e- or even a 4e-donor. However, theoretical calculations, supported by experiments, have shown that while in the amides (E = N) the amido nitrogen does function as... [Pg.96]

There are four types of organic species in which a carbon atom has a valence of only 2 or 3/ They are usually very short lived, and most exist only as intermediates that are quickly converted to more stable molecules. However, some are more stable than others and fairly stable examples have been prepared of three of the four types. The four types of species are carhocations (A), free radicals (B), carbanions (C), and carbenes (D). Of the four, only carbanions have a complete octet around the carbon. There are many other organic ions and radicals with charges and unpaired electrons on atoms other than carbon, but we will discuss only nitrenes (E), the nitrogen analogs of carbenes. [Pg.218]


See other pages where Carbanions 3-nitrogen is mentioned: [Pg.92]    [Pg.759]    [Pg.187]    [Pg.319]    [Pg.26]    [Pg.82]    [Pg.792]    [Pg.30]    [Pg.41]    [Pg.40]    [Pg.186]    [Pg.251]    [Pg.257]    [Pg.253]    [Pg.226]    [Pg.339]    [Pg.106]    [Pg.107]    [Pg.33]    [Pg.187]    [Pg.334]    [Pg.528]    [Pg.598]    [Pg.627]    [Pg.699]    [Pg.139]    [Pg.230]    [Pg.231]   
See also in sourсe #XX -- [ Pg.178 , Pg.179 , Pg.186 , Pg.187 ]




SEARCH



Carbanions nitrogen stabilization

Carbanions nitrogen stabilized

Carbonyl compounds nitrogen-stabilized carbanions

Indoles via nitrogen-stabilized carbanions

Of sp2-carbanionic centers in the vicinity heterocyclic nitrogen atoms

Pyridines via nitrogen-stabilized carbanions

Pyrroles via nitrogen-stabilized carbanions

Sp2-Carbanionic centers in the vicinity heterocyclic nitrogen atoms, generation

© 2024 chempedia.info