Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capillary mechanism

For this purpose, standard 5-mm NMR tubes were charged with 100 pL ethynylbenzene, 6 mg of the catalyst Pdx[N(octyl)4Cl]y, and 0.7 mL acetone-dg and placed into a 200-MHz spectrometer. Charges of 51%-enriched p-H2 were prepared as previously outlined via catalytic equilibration over charcoal at 77 K and injected repeatedly in synchronization with the pulsed NMR-experiment via an electromechanically lowered glass capillary mechanism. [Pg.342]

We note that a special regime of the so-called autonomous motion is possible, where the drop drifts at a constant nonzero velocity in the absence of any exterior factors [147,148]. In this case the other possible regime (no motion) proves to be unstable. Effects similar to the ones considered in this section can be produced by the chemoconcentration-capillary mechanisms [149], as well as other factors different from surface chemical reactions, for example, by heat production within the drop [390]. [Pg.258]

Alternately, the droplet temperature may not reach boiling point levels due to cocurrent airflow or because the residence time of droplets in the hottest regions of the dryer is often very short. In this case, moisture migration occurs through diffusion and capillary mechanisms. [Pg.144]

In this section, we describe the NADIS technique, which allows a direct manipulation of ultrasmall liquid quantities (Fig. 12.7a). We detail the experimental procedures used for tip fabrication and droplet deposition and review the main parameters controlling the size of the spot. We then show that besides its potential as a nanopatterning method, the NADIS technique is a unique tool to study capillary mechanisms at submicron scale. [Pg.462]

There are two approaches to explain physical mechanism of the phenomenon. The first model is based on the existence of the difference between the saturated vapor pressures above two menisci in dead-end capillary. It results in the evaporation of a liquid from the meniscus of smaller curvature ( classical capillary imbibition) and the condensation of its vapor upon the meniscus of larger curvature originally existed due to capillary condensation. [Pg.616]

The second mechanism can be explained by the wall liquid film flow from one meniscus to another. Thin adsorptive liquid layer exists on the surface of capillary channel. The larger is a curvature of a film, the smaller is a pressure in a liquid under the corresponding part of its film. A curvature is increasing in top s direction. Therefore a pressure drop and flow s velocity are directed to the top. [Pg.616]

Thus it is necessary to find alternative approach to describe the physical mechanism of two-side filling of conical capillaries with hquids. Theoretical model of film flow in conical dead-end capillary is based on the concept of disjoining pressure II in thin liquid film [13]... [Pg.616]

Fig. 4 illustrates the time-dependence of the length of top s water column in conical capillary of the dimensions R = 15 pm and lo =310 pm at temperature T = 22°C. Experimental data for the top s column are approximated by the formula (11). The value of A is selected under the requirement to ensure optimum correlation between experimental and theoretical data. It gives Ae =3,810 J. One can see that there is satisfactory correlation between experimental and theoretical dependencies. Moreover, the value Ae has the same order of magnitude as Hamaker constant Ah. But just Ah describes one of the main components of disjoining pressure IT [13]. It confirms the rightness of our physical arguments, described above, to explain the mechanism of two-side liquid penetration into dead-end capillaries. [Pg.617]

One more experimental result, which is important for PT is as follows. Only polar liquids fill conical capillaries from both sides. We used various penetrants to fill conical defects Pion , LZh-6A , LZhT , LUM-9 etc. It was established that only the penetrants containing polar liquid as the basic liquid component (various alcohols, water and others) manifest two-side filling phenomenon. This result gives one more confirmation of the physical mechanism of the phenomenon, based on liquid film flow, because the disjoining pressure strongly depends just on the polarity of a liquid. [Pg.618]

Physical mechanism of two-side filling of dead-end capillaries with liquids, based on liquid film flow along the wall, is proposed for the first time. Theoretical model correlates with experimental data. [Pg.618]

Capillary waves may be generated mechanically by means of an oscillating bar, and for this case one writes the solutions to Eqs. IV-25 and IV-26 in the form... [Pg.122]

For some types of wetting more than just the contact angle is involved in the basic mechanism of the action. This is true in the laying of dust and the wetting of a fabric since in these situations the liquid is required to penetrate between dust particles or between the fibers of the fabric. TTie phenomenon is related to that of capillary rise, where the driving force is the pressure difference across the curved surface of the meniscus. The relevant equation is then Eq. X-36,... [Pg.469]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Let us now consider the process of capillary condensation. For the pure liquid (a) in equilibrium with its vapour fi), the condition for mechanical equilibrium is given by Equation (3.6) and that for physicochemical equilibrium by... [Pg.120]

The time is perhaps not yet ripe, however, for introducing this kind of correction into calculations of pore size distribution the analyses, whether based on classical thermodynamics or statistical mechanics are being applied to systems containing relatively small numbers of molecules where, as stressed by Everett and Haynes, the properties of matter must exhibit wide fluctuations. A fuller quantitative assessment of the situation in very fine capillaries must await the development of a thermodynamics of small systems. Meanwhile, enough is known to justify the conclusion that, at the lower end of the mesopore range, the calculated value of r is almost certain to be too low by many per cent. [Pg.154]

These various considerations led Pierce, Wiley and Smith in 1949, and independently, Dubinin, to postulate that in very fine pores the mechanism of adsorption is pore filling rather than surface coverage. Thus the plateau of the Type 1 isotherm represents the filling up of the pores with adsorbate by a process similar to but not identical with capillary condensation, rather than a layer-by-layer building up of a film on the pore walls. [Pg.202]

Chapter 3, there is often a region immediately preceding the lower closure point, in which increased adsorption is brought about by reversible capillary condensation. The meniscus now tends to be somewhat ill defined owing to its small dimensions (p. 153), but the mechanism can still be thought of in Kelvin terms, where the driving force is the pressure difference across an interface. [Pg.244]

An electrode in which successive drops of Hg form at the end of a capillary tube as the result of a mechanical plunger, with each drop providing a fresh electrode surface. [Pg.509]

Capillary Tubes Figure 12.42 shows a cross section of a typical capillary tube. Most capillary tubes are made from fused silica coated with a 20-35-)J,m layer of poly-imide to give it mechanical strength. The inner diameter is typically 25-75 )J,m, which is smaller than that for a capillary GC column, with an outer diameter of 200-375 )J,m. [Pg.601]

Injecting the Sample The mechanism by which samples are introduced in capillary electrophoresis is quite different from that used in GC or HPLC. Two types of injection are commonly used hydrodynamic injection and electrokinetic injection. In both cases the capillary tube is filled with buffer solution. One end of the capillary tube is placed in the destination reservoir, and the other is placed in the sample vial. [Pg.602]

We defined the equation of motion as a general expression of Newton s second law applied to a volume element of fluid subject to forces arising from pressure, viscosity, and external mechanical sources. Although we shall not attempt to use this result in its most general sense, it is informative to consider the equation of motion as it applies to a specific problem the flow of liquid through a capillary. This consideration provides not only a better appreciation of the equation of... [Pg.598]


See other pages where Capillary mechanism is mentioned: [Pg.247]    [Pg.249]    [Pg.94]    [Pg.63]    [Pg.31]    [Pg.138]    [Pg.445]    [Pg.300]    [Pg.22]    [Pg.54]    [Pg.664]    [Pg.247]    [Pg.249]    [Pg.94]    [Pg.63]    [Pg.31]    [Pg.138]    [Pg.445]    [Pg.300]    [Pg.22]    [Pg.54]    [Pg.664]    [Pg.78]    [Pg.9]    [Pg.124]    [Pg.730]    [Pg.196]    [Pg.103]    [Pg.731]    [Pg.131]    [Pg.779]    [Pg.67]    [Pg.143]    [Pg.149]    [Pg.601]    [Pg.70]    [Pg.247]    [Pg.124]    [Pg.390]    [Pg.403]    [Pg.194]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



© 2024 chempedia.info