Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calorimeters conduction

The energy released when the process under study takes place makes the calorimeter temperature T(c) change. In an adiabatically jacketed calorimeter, T(s) is also changed so that the difference between T(c) and T(s) remains minimal during the course of the experiment that is, in the best case, no energy exchange occurs between the calorimeter (unit) and the jacket. The themial conductivity of the space between the calorimeter and jacket must be as small as possible, which can be achieved by evacuation or by the addition of a gas of low themial conductivity, such as argon. [Pg.1902]

This type of calorimeter is nomrally enclosed in a themiostatted-jacket having a constant temperature T(s). and the calorimeter (vessel) temperature T(c) changes tln-ough the energy released as the process under study proceeds. The themial conductivity of the intemiediate space must be as small as possible. Most combustion calorimeters fall into this group. [Pg.1903]

Figure Bl.27.11. Schematic diagram of a Tian-Calvet heat-flux or heat-conduction calorimeter. Figure Bl.27.11. Schematic diagram of a Tian-Calvet heat-flux or heat-conduction calorimeter.
In the combustion reaction as carried out in the calorimeter of Figure 7-2, the volume of the system is kept constant and pressure may change because the reaction chamber is sealed. In the laboratory experiments you have conducted, you kept the pressure constant by leaving the system open to the surroundings. In such an experiment, the volume may change. There is a small difference between these two types of measurements. The difference arises from the energy used when a system expands against the pressure of the atmosphere. In a constant volume calorimeter, there is no such expansion hence, this contribution to the reaction heat is not present. Experiments show that this difference is usually small. However, the symbol AH represents the heat effect that accompanies a chemical reaction carried out at constant pressure—the condition we usually have when the reaction occurs in an open beaker. [Pg.112]

Instrumentation. H and NMR spectra were recorded on a Bruker AV 400 spectrometer (400.2 MHz for proton and 100.6 MHz for carbon) at 310 K. Chemical shifts (< are expressed in ppm coupling constants (J) in Hz. Deuterated DMSO and/or water were used as solvent chemical shift values are reported relative to residual signals (DMSO 5 = 2.50 for H and 5 = 39.5 for C). ESl-MS data were obtained on a VG Trio-2000 Fisons Instruments Mass Spectrometer with VG MassLynx software. Vers. 2.00 in CH3CN/H2O at 60°C. Isothermal titration calorimetry (ITC) experiments were conducted on a VP isothermal titration calorimeter from Microcal at 30°C. [Pg.456]

When heat is liberated or absorbed in the calorimeter vessel, a thermal flux is established in the heat conductor and heat flows until the thermal equilibrium of the calorimetric system is restored. The heat capacity of the surrounding medium (heat sink) is supposed to be infinitely large and its temperature is not modified by the amount of heat flowing in or out. The quantity of heat flowing along the heat conductor is evaluated, as a function of time, from the intensity of a physical modification produced in the conductor by the heat flux. Usually, the temperature difference 0 between the ends of the conductor is measured. Since heat is transferred by conduction along the heat conductor, calorimeters of this type are often also named conduction calorimeters (20a). [Pg.195]

It must be noted that the heat capacity of the calorimeter cell and of its contents p, which appears in the second term of Tian s equation [Eq. (12)], disappears from the final expression giving the total heat [Eq. (19)]. This simply means that all the heat produced in the calorimeter cell must eventually be evacuated to the heat sink, whatever the heat capacity of the inner cell may be. Changes of the heat capacity of the inner cell or of its contents influence the shape of the thermogram but not the area limited by the thermogram. It is for this reason that heat-flow microcalorimeters, with a high sensitivity, are particularly convenient for investigating adsorption processes at the surface of poor heat-conducting solids similar in this respect to most industrial catalysts. [Pg.210]

Laville (43) has supposed that the calorimeter is composed of a heat-conducting body (the internal boundary in Fig. 8) which receives, on a fraction (Si) of its surface at temperature 0i, a heat flux (t) generated within the calorimeter cell. Another fraction of its surface S2, at temperature 02, emits a heat flux which diffuses towards the heat sink at temperature 03-... [Pg.212]

In the calculations proposed by Camia (44), a heat pulse is produced within the calorimeter cell, which is initially in thermal equilibrium. The heat pulse diffuses through the heat-conducting body toward the heat sink which is maintained at a constant temperature 03. [Pg.212]

It is true, however, that many catalytic reactions cannot be studied conveniently, under given conditions, with usual adsorption calorimeters of the isoperibol type, either because the catalyst is a poor heat-conducting material or because the reaction rate is too low. The use of heat-flow calorimeters, as has been shown in the previous sections of this article, does not present such limitations, and for this reason, these calorimeters are particularly suitable not only for the study of adsorption processes but also for more complete investigations of reaction mechanisms at the surface of oxides or oxide-supported metals. The aim of this section is therefore to present a comprehensive picture of the possibilities and limitations of heat-flow calorimetry in heterogeneous catalysis. The use of Calvet microcalorimeters in the study of a particular system (the oxidation of carbon monoxide at the surface of divided nickel oxides) has moreover been reviewed in a recent article of this series (19). [Pg.238]

In the various sections of this article, it has been attempted to show that heat-flow calorimetry does not present some of the theoretical or practical limitations which restrain the use of other calorimetric techniques in adsorption or heterogeneous catalysis studies. Provided that some relatively simple calibration tests and preliminary experiments, which have been described, are carefully made, the heat evolved during fast or slow adsorptions or surface interactions may be measured with precision in heat-flow calorimeters which are, moreover, particularly suitable for investigating surface phenomena on solids with a poor heat conductivity, as most industrial catalysts indeed are. The excellent stability of the zero reading, the high sensitivity level, and the remarkable fidelity which characterize many heat-flow microcalorimeters, and especially the Calvet microcalorimeters, permit, in most cases, the correct determination of the Q-0 curve—the energy spectrum of the adsorbent surface with respect to... [Pg.259]

An extremely simplified scheme of a calorimeter (composite thermal detector) is shown in Fig. 15.6. The temperature of an absorber A (TA) is measured by a thermometer T. A thermal conductance G forms a thermal link with the heat sink B at the temperature Ts. In the ideal adiabatic situation (G = 0), an absorption of an energy AE produces an absorber temperature increase ... [Pg.331]

As in the case of calorimeters, a bolometer consists of an absorbing element with heat capacity C, which converts the impinging electromagnetic radiation to heat, and which is linked to a heat sink at temperature Ts via a thermal conductance G. The temperature TA of the absorber is measured by a thermometer in thermal contact with the absorber. [Pg.336]

Since the determination of absolute rate constants is one of the most urgent problems in cationic polymerization, and the styrene-perchloric acid system seemed to be so clean and simple, Gandini and Plesch set out first to check Pepper and Reilly s results by determining spectroscopically the concentration of carbonium ions during polymerization, and they intended then to extend the method to other monomers. However, their findings were not as expected. A comparison of spectroscopic and conductivity measurements with rate measurements in an adiabatic calorimeter showed [4] that in methylene dichloride solution ... [Pg.115]

In the course of a long and thorough study of the polymerisation of isobutene (IB) by syncatalytic systems based on aluminium-organic compounds (Magagnini et al., 1977 and preceding papers) measurements were made by a Biddulph-Plesch type reaction calorimeter fitted with conductivity (k) electrodes on polymerisations of IB by Et2AlCl + Cl2 in MeCl at -45 °C, from which a kp+A value could be obtained. The reactions and procedures can be summarised as follows ... [Pg.562]

The kinetics were studied by adiabatic calorimetry [18] and high vacuum isothermal dilatometry [21, 22]. The calorimeter and the dilatometers were fitted with electrodes [21] for measuring the conductivity of the reaction mixtures. [Pg.676]

In the calorimetric studies, the kinetic acceleration only became apparent when the calorimeter was stabilised to a constant temperature, rather than to a constant pre-cooling rate as had been the practice in the earlier work this improvement in technique had revealed the acceleration. However, the acceleration and the corresponding increase in conductivity were also observed in the isothermal dilatometric studies so that they cannot have been caused simply by the increase in temperature during the adiabatic reactions in the calorimeter. As is well-known [la] with this system, the degree of polymerisation of the polymer increases slightly as the concentration of the initiator is lowered (Table 1). [Pg.678]

Most of the experiments were done either in the Biddulph-Plesch reaction calorimeter or in vacuum dilatomers, both types of device being fitted with electrodes so that the changes of electrical conductivity during the reactions could be followed [15]. [Pg.742]

Figure 3a Dependence of the final conductivity k( on [HC104] for the polymerisation of 1.22 M 1,3-dioxolane (1). Initial T = -22 °C, final T = -16 °C for the calorimeter experiments with [HC104] > 10"3 M. The two experiments at the lowest [HC104] where done in a dilatometer at -20 °C (PHW)... Figure 3a Dependence of the final conductivity k( on [HC104] for the polymerisation of 1.22 M 1,3-dioxolane (1). Initial T = -22 °C, final T = -16 °C for the calorimeter experiments with [HC104] > 10"3 M. The two experiments at the lowest [HC104] where done in a dilatometer at -20 °C (PHW)...
In this context, the term adiabatic refers to calorimetry conducted under conditions that minimize heat losses to the surrounding environment to better simulate conditions in the plant, where bulk quantities of stored or processed material tend to minimize cooling effects. This class of calorimetry includes the accelerating rate calorimeter (ARC), from Arthur D. Little, Inc., and PHI-TEC from Hazard Evaluation Laboratory Ltd. [Pg.406]

Figure 6.2 Schematic representation of (a) an adiabatic calorimeter, (b) an isoperibol calorimeter, and (c) a heat conduction (or heat flow) calorimeter. fc and 7] are the temperatures of the calorimeter proper and the external jacket, respectively, and is the heat flow rate between the calorimeter proper and the external jacket. Figure 6.2 Schematic representation of (a) an adiabatic calorimeter, (b) an isoperibol calorimeter, and (c) a heat conduction (or heat flow) calorimeter. fc and 7] are the temperatures of the calorimeter proper and the external jacket, respectively, and <I> is the heat flow rate between the calorimeter proper and the external jacket.
In well-designed isoperibol calorimeters, the heat transfer between the calorimeter proper and the jacket takes place according to Newton s law, with conduction being the dominant mechanism [3,21,35-38]. In this case, the rate of temperature change during the initial and final periods, g, is given by... [Pg.90]

The first heat flow calorimeter based on Seebeck, Peltier, and Joule effects was built by Tian at Marseille, France, and reported in 1923 [156-158]. The set-up included two thermopiles, one to detect the temperature difference 7) — 7) and the other to compensate for that difference by using Peltier or Joule effects in the case of exothermic or endothermic phenomena, respectively. This compensation (aiming to keep 7) = T2 during an experiment) was required because, as the thermopiles had a low heat conductivity, a significant fraction of the heat transfer would otherwise not be made through the thermopile wires and hence would not be detected. [Pg.138]

Figure 9.2 A schematic diagram of a Calvet s calorimeter, adapted from [157], Only one of the twin calorimetric units (A), with its thermopiles (T) is shown. These units fit into high-conductivity metal blocks (B). Care cones for equipartition of thermal fluctuations D is a thick metal cylinder surrounded by a series of canisters (E). H is an electric heater, and the outer cylinder (I) is a thermal insulator. Figure 9.2 A schematic diagram of a Calvet s calorimeter, adapted from [157], Only one of the twin calorimetric units (A), with its thermopiles (T) is shown. These units fit into high-conductivity metal blocks (B). Care cones for equipartition of thermal fluctuations D is a thick metal cylinder surrounded by a series of canisters (E). H is an electric heater, and the outer cylinder (I) is a thermal insulator.

See other pages where Calorimeters conduction is mentioned: [Pg.1037]    [Pg.1037]    [Pg.1905]    [Pg.1908]    [Pg.1916]    [Pg.253]    [Pg.370]    [Pg.87]    [Pg.195]    [Pg.196]    [Pg.198]    [Pg.199]    [Pg.204]    [Pg.215]    [Pg.216]    [Pg.218]    [Pg.231]    [Pg.234]    [Pg.240]    [Pg.229]    [Pg.311]    [Pg.79]    [Pg.548]    [Pg.83]    [Pg.84]    [Pg.110]    [Pg.137]    [Pg.140]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Calorimeters

Heat conduction calorimeters

Heat conduction calorimeters techniques

Heat conduction calorimeters, measurement

Mechanical-conduction calorimeters

Thermal conduction calorimeters

© 2024 chempedia.info