Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection limit calibration curve

Treatment of a real, imperfect calibration data set revealed the full complexity and breadth of the calibration curve -detection limit problem, ranging from varying statistical weights to an uncertain model and data containing possible blunders to an artificially imposed response threshold. [Pg.50]

In the text which follows we shall examine in numerical detail the decision levels and detection limits for the Fenval-erate calibration data set ( set-B ) provided by D. Kurtz (17). In order to calculate said detection limits it was necessary to assign and fit models both to the variance as a function of concentration and the response (i.e., calibration curve) as a function of concentration. No simple model (2, 3 parameter) was found that was consistent with the empirical calibration curve and the replication error, so several alternative simple functions were used to illustrate the approach for calibration curve detection limits. A more appropriate treatment would require a new design including real blanks and Fenvalerate standards spanning the region from zero to a few times the detection limit. Detailed calculations are given in the Appendix and summarized in Table V. [Pg.58]

APPENDIX — CALIBRATION CURVE DETECTION LIMITS (Calculation of Table V Results) ... [Pg.73]

In general, quantitative analyses are carried out as usual, using internal or external standards and calibration curves. Detection limits can be achieved in the lower picogram range dependent on the selected derivatization procedure. [Pg.1276]

Depict the surface stress values for antibody inhibited signal for each of the series with different antigen amounts and the fixed antibody concentration to a calibration curve. Lower limit of detection should be in the desired range for the... [Pg.65]

The choice between X-ray fluorescence and the two other methods will be guided by the concentration levels and by the duration of the analytical procedure X-ray fluorescence is usually less sensitive than atomic absorption, but, at least for petroleum products, it requires less preparation after obtaining the calibration curve. Table 2.4 shows the detectable limits and accuracies of the three methods given above for the most commonly analyzed metals in petroleum products. For atomic absorption and plasma, the figures are given for analysis in an organic medium without mineralization. [Pg.38]

A sample is to be analyzed following the protocol shown in Figure 15.2, using a method with a detection limit of 0.05 ppm. The relationship between the analytical signal and the concentration of the analyte, as determined from a calibration curve is... [Pg.723]

The REE values obtained for the U.S.G.S. standards by this method compare well with the literature values obtained by NAA, MS and other methods. Einear calibration curves in the range of about 0 to 200 956 g/g are obtained and detection limits in the range of 0.06 to 0.04 956 /g are achieved. [Pg.205]

It is known that Selenium catalyzes reaction of some dye reduction by Sulphide. On this basis spectrophotometric and test-techniques for Selenium determination are developed. Inefficient reproducibility and low sensitivity are their deficiencies. In the present work, solid-phase reagent on silica gel modified first with quaternary ammonium salt and then by Indigocarmine was proposed for Selenium(IV) test-determination. Optimal conditions for the Selenium determination by method of fixed concentration were found. The detection limit of Se(IV) is 10 ftg/L = 2 ng/sample). Calibration curve is linear in the range 50-400 ftg/L of Se(IV). The proposed method is successfully applied to the Selenium determination in multivitamins and bioadditions. [Pg.397]

This, on the one hand, reduces the detection limit so that less sample has to be applied and, thus, the amounts of interfering substanees are reduced. On the other hand, the linearity of the calibration curves can also be increased and, hence, fewer standards need to be applied and scanned in routine quantitative investigations so that more tracks are made available for sample separations. However, the introduction of a large molecular group can lead to the equalization of the chromatographic properties. [Pg.57]

It is appropriate at this juncture to illustrate the power of chemiluminescence in an analytical assay by comparing the limits of sensitivity of the fluorescence-based and the chemllumlnescence-based detection for analytes in a biological matrix. The quantitation of norepinephrine and dopamine in urine samples will serve as an illustrative example. Dopamine, norepinephrine, and 3,4-dihydroxybenzy-lamine (an internal standard) were derivatized with NDA/CN, and chemiluminescence was used to monitor the chromatography and determine a calibration curve (Figure 15). The limits of detection were determined to be less than 1 fmol injected. A typical chromatogram is shown in Figure 16. [Pg.151]

With the multitude of transducer possibilities in terms of electrode material, electrode number, and cell design, it becomes important to be able to evaluate the performance of an LCEC system in some consistent and meaningful maimer. Two frequently confused and misused terms for evaluation of LCEC systems are sensitivity and detection limit . Sensitivity refers to the ratio of output signal to input analyte amount generally expressed for LCEC as peak current per injected equivalents (nA/neq or nA/nmol). It can also be useful to define the sensitivity in terms of peak area per injected equivalents (coulombs/neq) so that the detector conversion efficiency is obvious. Sensitivity thus refers to the slope of the calibration curve. [Pg.24]

Generate a 4-5-point calibration curve with standards of concentrations within an order of magnitude of the estimated detection limit. For this purpose, the detection limit may be estimated as a concentration that would yield a signal three times Ap p. The calibration curve should be generated by plotting detector response (x) vs concentration (c). [Pg.69]

Cyclic voltammetry, square-wave voltammetry, and controlled potential electrolysis were used to study the electrochemical oxidation behavior of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions were investigated. Following optimization of voltammetric parameters, pH, and reproducibility, a linear calibration curve over the range 1 x 10 6 to 1 x 10 4 mol/dm3 niclosamide was achieved. The detection limit was found to be 8 x 10 7 mol/dm3. This voltammetric method was applied for the determination of niclosamide in tablets [33]. [Pg.83]

Alemu et al. [35] developed a very sensitive and selective procedure for the determination of niclosamide based on square-wave voltammetry at a glassy carbon electrode. Cyclic voltammetry was used to investigate the electrochemical reduction of niclosamide at a glassy carbon electrode. Niclosamide was first irreversibly reduced from N02 to NHOH at —0.659 V in aqueous buffer solution of pH 8.5. Following optimization of the voltammetric parameters, pH and reproducibility, a linear calibration curve over the range 5 x 10 x to 1 x 10-6 mol/dm3 was achieved, with a detection limit of 2.05 x 10-8 mol/dm3 niclosamide. The results of the analysis suggested that the proposed method has promise for the routine determination of niclosamide in the products examined [35]. [Pg.83]

Favaro and Fiorani [34] used an electrode, prepared by doping conductive C cement with 5% cobalt phthalocyanine, in LC systems to detect the pharmaceutical thiols, captopril, thiopronine, and penicillamine. FIA determinations were performed with pH 2 phosphate buffer as the carrier stream (1 mL/min), an injection volume of 20 pL, and an applied potential of 0.6 V versus Ag/AgCl (stainless steel counter electrode). Calibration curves were developed for 5-100 pM of each analyte, and the dynamic linear range was up to approximately 20 pM. The detection limits were 76, 73, and 88 nM for captopril, thiopronine, and penicillamine, respectively. LC determinations were performed using a 5-pm Bio-Sil C18 HL 90-5S column (15 cm x 4.6 mm i.d.) with 1 mM sodium 1-octanesulfonate in 0.01 M phosphate buffer/acetonitrile as the mobile phase (1 mL/min) and gradient elution from 9 1 (held for 5 min) to 7 3 (held for 10 min) in 5 min. The working electrode was maintained at 0.6 V versus Ag/AgCl, and the injection volume was 20 pL. For thiopronine, penicillamine, and captopril, the retention times were 3.1, 5.0, and 11.3 min, and the detection limits were 0.71, 1.0, and 2.5 pM, respectively. [Pg.139]

FIA determinations of penicillamine was performed by Favaro and Fiorani [48] with phosphate buffer (pH 2) as the carrier stream (eluted at 1 mL/min), an injection volume of 20 pL, and an applied potential of 0.6 V versus Ag/AgCl (stainless steel counter electrode). The calibration curves were presented for 5-100 pM of the analyte, the dynamic linear range was up to approximately 20 pM, and the detection limits was 88 nM for penicillamine. [Pg.142]

The calibration curve obtained for hydrogen peroxide exhibited a detection limit of 30 pmol and ranged over three decades at least. These performances compared well with those previously obtained in non-micellar media54. The presence of surfactant compounds in the ECL measurement buffer appeared thus to have little effect on the H2O2 ECL sensor performances. In optimized conditions, the determination of free cholesterol could be performed with a detection limit of 0.6 nmol and a calibration curve ranging over two decades at least. [Pg.171]


See other pages where Detection limit calibration curve is mentioned: [Pg.248]    [Pg.507]    [Pg.248]    [Pg.507]    [Pg.1283]    [Pg.272]    [Pg.48]    [Pg.50]    [Pg.157]    [Pg.446]    [Pg.639]    [Pg.103]    [Pg.232]    [Pg.565]    [Pg.196]    [Pg.236]    [Pg.139]    [Pg.49]    [Pg.359]    [Pg.68]    [Pg.68]    [Pg.425]    [Pg.732]    [Pg.224]    [Pg.397]    [Pg.443]    [Pg.141]    [Pg.191]    [Pg.249]   
See also in sourсe #XX -- [ Pg.73 , Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 ]




SEARCH



Calibration curve

Calibration curve detection

Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

© 2024 chempedia.info