Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Caged Proteins kinetics

The dynamics of proton binding to the extra cellular and the cytoplasmic surfaces of the purple membranes were measured by the pH jump methods [125], The purple membranes selectively labeled by fluorescein Lys-129 of bacteri-orhodopsin were pulsed by protons released in the aqueous bulk from excited pyranine and the reaction of the protons with the indicators was measured. Kinetic analysis of the data implied that the two faces of the membrane differ in then-buffer capacities and in their rates of interaction with bulk protons. The extracellular surfaces of the purple membrane contains one anionic proton binding site per protein molecule with pA" 5.1. This site is within a Coulomb cage radius from Lys-129. The cytoplasmic surface of the purple membrane bears four to five pro-tonable moieties that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3 X 1010 M-1 sec ). The proximity between the elements is sufficiently high that even in 100 mM NaCl, they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. Quantitative evaluation of the dynamics of proton transfer from photoactivated bacteriorhodopsin to the bulk has been done by using numerical... [Pg.594]

One particular asset of structured self-assemblies is their ability to create nano- to microsized domains, snch as cavities, that could be exploited for chemical synthesis and catalysis. Many kinds of organized self-assemblies have been proved to act as efficient nanoreactors, and several chapters of this book discnss some of them such as small discrete supramolecular vessels (Chapter Reactivity In Nanoscale Vessels, Supramolecular Reactivity), dendrimers (Chapter Supramolecular Dendrlmer Chemistry, Soft Matter), or protein cages and virus capsids (Chapter Viruses as Self-Assembled Templates, Self-Processes). In this chapter, we focus on larger and softer self-assembled structures such as micelles, vesicles, liquid crystals (LCs), or gels, which are made of surfactants, block copolymers, or amphiphilic peptides. In addition, only the systems that present a high kinetic lability (i.e., dynamic) of their aggregated building blocks are considered more static objects such as most of polymersomes and molecularly imprinted polymers are discussed elsewhere (Chapters Assembly of Block Copolymers and Molecularly Imprinted Polymers, Soft Matter, respectively). Finally, for each of these dynamic systems, we describe their functional properties with respect to their potential for the promotion and catalysis of molecular and biomolecu-lar transformations, polymerization, self-replication, metal colloid formation, and mineralization processes. [Pg.3129]


See other pages where Caged Proteins kinetics is mentioned: [Pg.200]    [Pg.143]    [Pg.553]    [Pg.604]    [Pg.476]    [Pg.287]    [Pg.11]    [Pg.2128]    [Pg.6382]    [Pg.6383]    [Pg.2297]    [Pg.2127]    [Pg.6381]    [Pg.6382]    [Pg.69]    [Pg.684]    [Pg.355]    [Pg.119]    [Pg.150]    [Pg.232]    [Pg.299]    [Pg.306]    [Pg.197]    [Pg.92]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Kinetics proteins

© 2024 chempedia.info