Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cadmium processes

Combustion of coal as well as dust from zinc- and cadmium processing industrial plants are the main sources of thaliium emission into the atmosphere (Magorian et al., 1974). Thallium is accumulated together with other volatile species in filter and flue dust there it is remarkably soluble in water. [Pg.504]

Lover T efa/1997 Electrospray mass spectrometry of thiophenolate-capped clusters of CdS, CdSe and ZnS and cadmium and zinc thiophenolate complexes observation of fragmentation and metal, chalcogenide and ligand exchange processes Inorg. Chem. 36 3711... [Pg.2919]

Chemical Gas Detection. Spectral identification of gases in industrial processing and atmospheric contamination is becoming an important tool for process control and monitoring of air quaUty. The present optical method uses the ftir (Fourier transform infrared) interference spectrometer having high resolution (<1 cm ) capabiUty and excellent sensitivity (few ppb) with the use of cooled MCT (mercury—cadmium—teUuride) (2) detectors. [Pg.295]

Liquid- and vapor-phase processes have been described the latter appear to be advantageous. Supported cadmium, zinc, or mercury salts are used as catalysts. In 1963 it was estimated that 85% of U.S. vinyl acetate capacity was based on acetylene, but it has been completely replaced since about 1982 by newer technology using oxidative addition of acetic acid to ethylene (2) (see Vinyl polymers). In western Europe production of vinyl acetate from acetylene stiU remains a significant commercial route. [Pg.102]

Refining Processes. AH the reduction processes yield an impure metal containing some of the minor elements present in the concentrate, eg, cadmium in 2inc, or some elements introduced during the smelting process, eg, carbon in pig iron. These impurities must be removed from the cmde metal in order to meet specifications for use. Refining operations may be classified according to the kind of phases involved in the process, ie, separation of a vapor from a Hquid or soHd, separation of a soHd from a Hquid, or transfer between two Hquid phases. In addition, they may be characterized by whether or not they involve oxidation—reduction reactions. [Pg.169]

Volatilization. In this simplest separation process, the impurity or the base metal is removed as a gas. Lead containing small amounts of zinc is refined by batch vacuum distillation of the zinc. Most of the zinc produced by smelting processes contains lead and cadmium. Cmde zinc is refined by a two-step fractional distillation. In the first column, zinc and cadmium are volatilized from the lead residue, and in the second column cadmium is removed from the zinc (see Zinc and zinc alloys). [Pg.169]

Cementation is also an efficient way of putifyiag a pregnant solution by removing impurities that are more noble than the metal being processed. An example is the cementation of copper, cadmium, cobalt, and nickel from ziac solutions prior to electrowinning. [Pg.171]

Fused-salt electrolysis of K2NbFy is not an economically feasible process because of the low current efficiency (31). However, electrowinning has been used to obtain niobium from molten alkaU haUde electrolytes (32). The oxide is dissolved in molten alkaU haUde and is deposited in a molten metal cathode, either cadmium or zinc. The reaction is carried out in a ceramic or glass container using a carbon anode the niobium alloys with the cathode metal, from which it is freed by vacuum distillation, and the niobium powder is left behind. [Pg.23]

Copper Sulfide—Cadmium Sulfide. This thin-film solar cell was used in early aerospace experiments dating back to 1955. The Cu S band gap is ca 1.2 eV. Various methods of fabricating thin-film solar cells from Cu S/CdS materials exist. The most common method is based on a simple process of serially overcoating a metal substrate, eg, copper (16). The substrate first is coated with zinc which serves as an ohmic contact between the copper and a 30-p.m thick, vapor-deposited layer of polycrystaUine CdS. A layer is then formed on the CdS base by dipping the unit into hot cuprous chloride, followed by heat-treating it in air. A heterojunction then exists between the CdS and Cu S layers. [Pg.472]

Henkel Rearrangement of Benzoic Acid and Phthalic Anhydride. Henkel technology is based on the conversion of benzenecarboxyhc acids to their potassium salts. The salts are rearranged in the presence of carbon dioxide and a catalyst such as cadmium or zinc oxide to form dipotassium terephthalate, which is converted to terephthahc acid (59—61). Henkel technology is obsolete and is no longer practiced, but it was once commercialized by Teijin Hercules Chemical Co. and Kawasaki Kasei Chemicals Ltd. Both processes foUowed a route starting with oxidation of napthalene to phthahc anhydride. In the Teijin process, the phthaHc anhydride was converted sequentially to monopotassium and then dipotassium o-phthalate by aqueous recycle of monopotassium and dipotassium terephthalate (62). The dipotassium o-phthalate was recovered and isomerized in carbon dioxide at a pressure of 1000—5000 kPa ( 10 50 atm) and at 350—450°C. The product dipotassium terephthalate was dissolved in water and recycled as noted above. Production of monopotassium o-phthalate released terephthahc acid, which was filtered, dried, and stored (63,64). [Pg.488]


See other pages where Cadmium processes is mentioned: [Pg.211]    [Pg.66]    [Pg.55]    [Pg.11]    [Pg.55]    [Pg.211]    [Pg.66]    [Pg.55]    [Pg.11]    [Pg.55]    [Pg.311]    [Pg.65]    [Pg.109]    [Pg.37]    [Pg.448]    [Pg.513]    [Pg.10]    [Pg.420]    [Pg.479]    [Pg.56]    [Pg.545]    [Pg.549]    [Pg.550]    [Pg.105]    [Pg.256]    [Pg.334]    [Pg.335]    [Pg.138]    [Pg.139]    [Pg.174]    [Pg.175]    [Pg.187]    [Pg.504]    [Pg.242]    [Pg.432]    [Pg.471]    [Pg.10]    [Pg.232]    [Pg.555]    [Pg.556]    [Pg.556]    [Pg.155]    [Pg.336]    [Pg.246]    [Pg.65]    [Pg.527]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Cadmium electroplating processes

Specific Processes for the Treatment of Nickel Cadmium Batteries

© 2024 chempedia.info